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                                                         ABSTRACT 

 

 

One of the most important problems to resolve nowadays is hardware Trojan circuits. End-users need to 

get guarantees that their devices are reliable enough, are not controlled by unknown entities, and will not 

leak sensitive information. Several methodologies help at solving the problems of hardware Trojans 

through the help of  “Golden reference”,which is not always available.This arises the need for an efficient 

method called as CRC.This is a logic based detection procedure which avoids the requirements of 

complex pre-processing procedures like fingerprinting,thermal imaging,segmentation etc. First, a counter 

based Trojan is designed and simulated functionally by XILINX VIVADO 2020.2. This Trojan is 

designed in Verilog HDL, which is used to target UART module of FPGA onboard. Payload of the Trojan 

is to corrupt the transmitted frame after trigger gets activated.Then,CRC algorithm which is designed in 

verilog HDL is simulated and implemented onboard for detection of hardware Trojan. The entire circuit 

was simulated by simulation tool, and implemented on ARTIX-7 Starter Kit Board. This work involves 

the detection of Hardware Trojan in a circuit using an improved voting algorithm employing CRC(Cyclic 

Redundancy Check).This logic based detection procedure avoids the requirements of complex pre-

processing procedures like segmentation, fingerprinting, thermal imaging etc. Detection accuracy of this 

CRC method is found to be 95.27% based on detailed analysis with infected and non-infected circuits. 

 

 



vii 
 

 

 

LIST OF FIGURES 
 

Fig 1.1 (a) General model of a hardware Trojan circuit realized through malicious 

modification of a hardware. 

(b) An example of combinational Trojan. 
 

(c) An example of sequential Trojan. 

2 

Fig 2.1 Block Diagram of Hardware Trojan Inserted Circuit 11 

Fig 2.2 Simplified architecture of an FPGA showing the trigger points that a Trojan 

may use. 

13 

Fig 2.3 Simplified schematic of digital clock manager (DCM) in Xilinx’s Virtex-5 

FPGA device 

13 

Fig 2.4 Diagram showing examples of payloads that can be altered by an implanted 

Trojan circuit. 

14 

Fig 2.5 Programmable I/O block containing hardware Trojans to cause logical and 

electrical malfunction. 

16 

Fig 2.6 FPGA device with security features for bitstream decryption. 16 

Fig 2.7 Hardware Trojan inside: 
 

(a) A Configurable Logic Block (CLB) and 
 

(b) An Embedded Memory Block (EMB) of FPGA. 

 

 

 

 
17 

Fig 2.8 Types of Hardware Trojans 17 

Fig 2.9 Simplified diagram of Protocol used 18 

Fig 2.10 The Attack 18 

Fig 2.11 Real life implementation of Chin & Pin attack 19 

Fig 3.1 Xilinx Artix 7 FPGA Trainer kit  

21 

Fig 3.2 Port numbers of Artix7 FPGA Trainer kit 21 

Fig 3.3 FPGA Configure through External PROM 24 



viii 
 

 

 
 

Fig 3.4 FPGA Configure through SPI FLASH Memory 24 

Fig 3.5 FPGA Configure through Internal FLASH 25 

Fig 3.6 Slave Mode 25 

Fig 3.7 JTAG connection 26 

Fig 3.8 Block diagram of FPGA 28 

Fig 3.9 Schematic diagram of FPGA Logic blocks 30 

Fig 3.10 Schematic diagram of Coarse grain block 30 

Fig 3.11 Schematic diagram of FPGA Design flow 31 

Fig 4.1 Representation of a module as black box with its ports. 33 

Fig 4.2 Illustration of Scalars and Vectors 35 

Fig 4.3 Flowchart representation of Verilog Code 40 

Fig 4.4 Opening window of Xilinx 2019.2 44 

Fig 4.5 Create project window 45 

Fig 4.6 Name and Location entry for project 45 

Fig 4.7 Selecting type of the project 46 

Fig 4.8 Specifications window for the project 46 

Fig 4.9 Summary window of the project 47 

Fig 4.10 Add sources 47 

Fig 4.11 Creating source 48 

Fig 4.12 Creating file window 48 

Fig 4.13 Filename creation window 49 

Fig 4.14 Sources window 49 

Fig 4.15 Sidebar for performing required process. 50 



ix 
 

 

 

        Fig 5.1     Flowchart of Modified voting algorithm                                                                          54 

      Fig 5.2 

      Fig 5.3 

      Fig 5.4  

      Fig 5.5   

      Fig 5.6 

      Fig 5.7 

      Fig 5.8       

Simple outline for CRC  

   RTL schematic diagram for counter based sequential Trojan 

   Floor planning of counter based sequential Trojan circuit 

   Simulation results for counter based sequential Trojan circuit 

   RTL schematic diagram for Trojan detection circuit 

   Floor planning of Trojan detection circuit 

   Simulation result for Trojan detection circuit 

 

   55 

   56 

   56 

   57 

   59 

   59 

   60 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



x 
 

 

 

 

 

 

 

LIST of TABLES 
 

Table 3.1 Artix-7 FPGA Feature Summary by Device 22 

Table 3.2 Artix-7 FPGA Device-Package Combinations and 

Maximum I/Os 

22 

Table 3.3 Comparison between programming techniques 29 

Table 5.1 Synthesis report for Trojan Insertion 58 

                     Table 5.2            Synthesis report for Trojan Detection                                     60



xi 
 

 

 

LIST OF ABBREVATIONS 
 

HT Hardware Trojan 

HTT Hardware Trojan Threat 

FPGA Field Programmable Gate Array 

MOSFET Metal Oxide Semiconductor Field Effect Transistor 

CLB Configurable Logic Blocks 

EMB Embedded Memory Blocks 

HDL Hardware Description Language 



 

Chapter 1 

INTRODUCTION 

Nowadays, hardware Trojan protection became a hot topic especially after the horizontal silicon 

industry business model. Third party IP is the building block of many critical systems and that arise a 

question of confidentiality and reliability of these blocks. In this work, we present novel methods for system 

protection and Trojan detection that alleviate the need for a golden chip. In addition, we introduce a scenario 

to dynamically remove infected IPs embedded on FPGAs. In this project side-channel analysis and ring 

oscillator based approaches were used to detect Hardware Trojan. Dynamic Trojan detection is done using 

multiple variant voting. Different methodologies can be implemented for different Trojans. 

 1.1   Project Objective 
 

The main objective of the project is to insert a hardware Trojan and detect it using various methods 

and thereby compare which type of Trojan is detected efficiently by which type of methods. The hardware 

Trojan is nothing but a malicious circuit which is placed in the integrated chip without affecting its normal 

functionality. All these detection methods are followed by a flow of process specified as an algorithm in 

chapter5.Everytime the Trojan inserted circuit parameters are compared with the golden circuit and then 

judge if Trojan is present or not. 

Simulation results are obtained for different circuits which are in Chapter 5. 
 

 1.2   Background 
 

Malicious modifications of integrated circuits, referred to as Hardware Trojans, have emerged as a 

major security threat due to widespread outsourcing of IC manufacturing to un-trusted foundries. An 

adversary can potentially tamper with a design in these fabrication facilities by inserting malicious circuitry, 

leading to potentially catastrophic malfunctions in security-critical application domains, such as the military, 

government, communications, space, and medicine. Conventional post-manufacturing testing, test  

generation algorithms, and test coverage metrics often fail to detect Hardware Trojans due to their diversity, 

complexity, and rare triggering conditions. An intelligent adversary can design a Trojan to only trigger under 

very rare conditions on an internal node, which is unlikely to arise during post-manufacturing test, but can be 

triggered during long hours of in-field operation. 

The detection of Trojans by employing side-channel parameters, such as power trace or delay 

overhead, is limited due to the large process variations in nano scale IC technologies, detection sensitivities 

of small Trojans, and measurement noise. Often these issues mask the effect of Trojan circuits, especially for 

ultra small Trojans. From an adversary’s perspective, the desired features for a successful Trojan are as 

follows: rarely activated to evade logic based testing, low overhead to evade side-channel based detection 

approach, and low side-channel signature to evade Design for Security (DfS) hardening mechanisms. The 
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condition of Trojan activation is referred to as the trigger, and the node affected by the Trojan is referred to 

as its payload. Trojans can be classified based on their triggering conditions or payload mechanisms. The 

trigger mechanism can be either digital or analog. Digitally triggered Trojans can be classified into 

combinational and sequential Trojans. Trojan can also be classified into digital and analog based on the 

payload mechanisms. Digital Trojans invert the logic values at internal nodes or modify the contents of 

memory locations, while the analog payload Trojans may affect circuit parameters, such as performance, 

power, and noise margin. 

A combinational Trojan is activated on the simultaneous occurrences of a particular condition at 

certain internal nodes, while a sequential Trojan acts as a time-bomb, exhibiting its malicious effect due to a 

sequence of rare events after a long period of operation. Fig 1.1(a) illustrates the general scenario of a Trojan 

attack in a design, where a Trojan is realized through the malicious modification of the circuit with a trigger 

condition and payload. Fig 1.1 (b) shows an example of combinational Trojan which does not contain any 

sequential elements, and depends only on the simultaneous occurrence of a set of rare node conditions. 

Conversely, the sequential Trojans shown in Fig 1.1 (c) undergo a sequence of state transitions before 

triggering a malfunction. The 3-bit counter causes a malfunction at the node S on reaching a particular count, 

and the count is increased only when the condition a = 1,b = 0 is satisfied at the positive clock-edge. 

Protection against hardware Trojan has been widely explored by researchers. These approaches are based on 

the following three approaches: 

(1) Specialized functional testing that rely on triggering an unknown Trojan and observing its effect in 

output ports of a design; 

(2) side-channel analysis that rely on observing a Trojan effect in physical parameters, such as supply 

current or path delay and 

(3) design/integration approaches that either prevent a Trojan insertion or facilitate detection during 

production test. 

 
 

Fig1.1 (a) General model of a hardware Trojan circuit realized through malicious modification of a 

hardware. (b) An example of combinational Trojan. (c) An example of sequential Trojan. 



3  

 1.3   Motivation 
 

The main idea for working on hardware Trojan detection is to control the cyber crimes to the 

maximum extent. For example, in the year 2007 the backdoor built into a Syrian radar system was 

responsible for the system’s failure. There are also reports of Trojans being used by the USSR to 

intercept American communications during the cold war. Time to activate a hardware Trojan circuit is a 

major concern from the authentication standpoint. 

It is also a direct threat to the already vulnerable Internet of Things, meaning that wireless-

enabled household devices also become potential targets. The problem is such that even previously 

‘reputable’ factories are vulnerable to attacks, since all that is required is one employee to alter the 

existing code to include a Trojan. As most IC designs are extremely large and contain a huge amount of 

hardware description, these inclusions are difficult to detect and the sheer size of the code can require 

many people having access to the code at production level. 

Regarding military grade products utilizing ICs, the problem of hardware Trojans is critical with 

the threat level of the Trojan being such that it could potentially be catastrophic. Malicious inclusions of 

code could cause life saving equipment to fail, missiles to lose control, and cryptography keys to be 

leaked. While incidents of hardware Trojans, are not openly discussed there have been a few noted. In 

2007, it was assumed that a backdoor built into a Syrian radar system was responsible for the system’s 

failure. There are also reports of Trojans being used by the USSR to intercept American 

communications during the cold war. The problem is aggravated further still when considered in 

relation to the growth in production of counterfeit goods. Such goods may be produced in less than 

reputable factories, so the inclusion of malicious code in  the production process is far from unrealistic 

.As counterfeit goods are not generally sold through trustworthy channels, it is impossible to recall 

products found to be unsafe or indeed to produce updated firmware to deal with emerging threats. This 

can expose consumers to a plethora of malicious attacks by hackers. For example, a Trojan leaking 

cryptography keys in counterfeit IOT devices could potentially give hackers access to a network of 

devices that can be utilized in ‘ Mirai’ like attacks and cannot be recalled or patched In this paper, a 

hardware Trojan is created and emulated on a consumer FPGA board. The experiments to detect the 

Trojan in a dormant and active state are made using off-the-shelf technologies which rely on thermal 

imaging, power monitoring, and side-channel analysis. 

Unfortunately, those theories are not in nature groundless or out-with the realms of the possible. 

In fact several of them have already been instantiated. One such rumor of ‘kill switches’ being hidden 

in commercial processors was confirmed by an anonymous U.S. defence contractor who indicated the 

culprit to be a ‘European Chip Maker’ .The potential consequence of the existence of such a switch 

could be catastrophic. Indeed, as previously highlighted, this particular hardware Trojan was blamed for 

the failure of a Syrian radar to detect an incoming air strike for the Threat of the Hardware Trojan. 
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The complexity and cost of the design of ICs has grown exponentially over the last decade as the 

semiconductor industry has scaled to sub-micron levels. A typical IC board will go through a rigorous process 

consisting of several stages. Firstly, the specifications must be translated into a behavioural description, usually 

in a hardware description language such as Verilog or VHDL. Once this has been completed, the next phase is 

to perform synthesis to transform the behavioural description into a design implementation using logic gates 

such as a net-list. Once the synthesis has been completed, the net-list is implemented as a layout design and the 

digital files are passed to the foundry for fabrication. As well as outsourcing the production of ICs, many 

companies are also purchasing third party intellectual property (IP) cores, and utilizing third party Electronic 

Design Automation (EDA) tools. Each use of third-party software presents a new opportunity for attacks such 

as hardware Trojan insertion, IP piracy, IC tampering, and IC cloning. Although these attacks are all of 

importance, the hardware Trojan is by far the most dangerous attack, and, as such, has garnered much 

attention. At Foundry Level As semiconductor technology has advanced, the cost of owning foundry has 

increased dramatically. In 2015, the cost was estimated to be in the region of 5 billion USD. As a direct result 

of this, many companies can no longer afford to fund the production process from start to finish, and are 

outsourcing their production to cheaper foreign foundries. Whilst undesirable modifications to ICs should 

ideally be detectable by pre-silicon verification and simulation, this would require a specific model of the entire 

IC design and this is not always readily available particularly where third party IP cores or EDA tools have 

been used. In addition, large multi module designs are rarely compliant with exhaustive verification. 

Post silicone approaches to design verification include destructive de-packaging and reverse 

engineering of the IC. However, current techniques do not allow destructive verification of ICs to be 

scalable. It is also possible for an attacker to infect only a portion of the produced ICs, making these tests 

futile. Most post silicone logical testing techniques are also unsuitable for detecting hardware Trojans. This 

is attributed to the stealthy nature of the hardware Trojan and to the large numbers of differing taxonomy 

that can be employed by the attackers. Most hardware Trojans are programmed to activate under a specific 

set of conditions, and a skilled attacker would ensure that these conditions were undetectable by the testing 

routine. This is particularly true of Trojans targeting sequential finite state machines. Industries Affected 

Military Hardware Trojans are a huge threat to many industries. However, security conscious industries, 

such as the military, are in a particularly high risk bracket and defence departments are very aware of this. 

The U.S. Department of Defense (DoD) has created a “Trusted Foundry Program” to ensure its military 

equipment remains free of hardware Trojans by using only accredited foundries. This means that only 

American foundries which are located on the Americal soil and which underwent the strictest vetting process 

are allowed to work on the chips for the U.S. DoD. In addition to vetting the foundries, close attention is 

being paid to the other links in the design and supply chain. While this approach may seem effective, it has 

its limitations. The majority of western foundries are woefully behind their foreign counterparts when it 
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comes to the level of technology they can provide. This seriously limits access to more advanced chips which 

are required for modern avionics and weapons systems. 

If the attacker creates the Trojan through the modification of the existing code, then it will be 

classified as a parametric. Typically, this can be achieved by thinning wires or weakening transistors and flip 

flops. This type of Trojan is notoriously hard to detect as the alteration can be minuscule. The next physical 

characteristic the attacker would have to consider would be the size of the hardware Trojan. In this context, 

the size refers to the physical extension of the hardware Trojan or the number of components it consists of. 

In case of a large Trojan consisting of many components, an attacker can distribute these across the IC, 

placing components where they are necessary to execute their payload in accordance with the functions of 

the hardware Trojan. This is known as loose distribution. In contrast, a smaller hardware Trojan consisting 

of only a few components allows for the components to be placed together as they will occupy only a small 

part of the layout of the IC. This is known as tight distribution. 

On rare occasions, a determined attacker could regenerate the layout to encompass the hardware 

Trojan, moving the components of the IC to accommodate the components of the hardware Trojan. This is 

referred to as a structural alteration Activation Characteristics Typically, a hardware Trojan will be 

condition- based, meaning that its activation will be dependent on a trigger defined by the attacker. The 

trigger itself will generally consist of either a predefined input pattern, or specific internal logic state, or 

counter value, and can be triggered both internally and externally. An externally triggered hardware Trojan 

will usually consist of malicious logic within the IC that utilizes an external sensor such as a radio antenna. 

The attacker will then communicate via the compromised component enabling them to trigger the antenna. It 

is easy to see why this can be extremely dangerous when it comes to security conscious industries such as 

the military. It is not out-with the realms of the believable to postulate that an attacker could feasibly re-route 

or switch off a missile via a radio signal as suggested. 

Conversely, an internally triggered hardware Trojan will look within the circuitry for the set of 

conditions that will cause it to activate. A typical example of this would be countdown logic. In contrast to 

the condition-based Trojan that will only activate when its trigger conditions are met, the “always-on” 

Trojan is active from the moment of insertion, and relies on internal signals. This type of hardware Trojan is 

generally split into two categories; combinational and sequential. A combinational Trojan will activate upon 

detection of a specific set of circumstances within the internal signals of the IC. Sequential Trojans will also 

monitor the internal signals of the IC. However, instead of looking for a specific condition, they activate 

when a specific sequence of events occurs. 
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 1.4   Project Outline 
 

The project Hardware Insertion and Detection deals with the hardware security domain where 

securing information is vital in this sophisticated contemporary world. Day to day technology has been 

improving along with this the loop holes for hackers are becoming more and causing cyber security 

problems. In order to prevent and control these problems this project gives a scope to control the problems. 

By continuous analysis of the circuit the parameters like path delay can be found changed if Trojan is 

present. 

A circuit is said to be Trojan affected if its parameters shows a significant change with the parameters of 

Trojan free circuit. The Trojan free circuit is called the golden circuit. Different Trojans can be detected 

using different methodologies. Most popular and effective methods are side channel analysis and ring 

oscillator based detection. All these circuits are simulated using Xilinx Vivado and reports were generated 

and the parameter were compared for Trojan free and Trojan effected circuit. 
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CHAPTER 2 

 
HARDWARE SECURITY 

 

 2.1   Introduction 

 
Hardware is a collection of physical elements that constitutes a computer system. Hardware is used 

by everyone even if they are not aware of it. Hardware in this context might be: 

a. Computer Hardware: Some computer hardware are Processors, firmware, memory etc. 

 
i. Processors: is the electronic circuitry within a computer that carries out the instructions of a computer 

program by performing the basic arithmetic, logical, control and input/output (I/O) operations specified by 

the instructions 

ii. Firmware: is the combination of a hardware device, e.g. an integrated circuit, and computer instructions 

and data that reside as read only software on that device 

iii. Memory: Memory refers to the device used to store information for use in a computer. 

 
b. Mobile Hardware: Sim Card, RFID/Smart Card, Chip and Pin 

 
i. Sim Card: is an integrated circuit that is intended to securely store the international mobile subscriber 

identity (IMSI) and the related key used to identify and authenticate subscribers on mobile telephony devices 

(such as mobile phones and computers). 

ii. RFID: is the wireless use of electromagnetic fields to transfer data, for the purposes of automatically 

identifying and tracking tags attached to objects. For example, an RFID tag attached to an automobile during 

production can be used to track its progress through the assembly line. 

iii. Smart Card: is any pocket-sized card with embedded integrated circuits. Smart cards are made of plastic, 

and can provide strong security authentication for single sign-on (SSO) with large organizations 

iv Chip & Pin: "Chip" refers to a computer chip embedded in the smartcard, and "PIN" refers to a personal 

identification number that the customer must supply. "Chip and PIN" is also used in a generic sense to mean 

any EMV smart card technology that relies on an embedded chip and a PIN. 

c. Future Hardware: PUFs (Physically Unclonable Functions) PUFs have a unique fingerprint in a physical 

object that means if you have an object with one fingerprint; another object with the same fingerprint cannot 

be created. It uses challenge/response for its operations. The challenge/response explains that if a message is 

sent to a physical object and the physical object is changed to another physical object, and same message is 
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sent to the second physical object, the two physical objects react differently because of their unique 

fingerprint. 

 2.2   Attacks on Hardware 

 
1. Physical Attacks: The main thing that differentiates hardware attacks from software attacks is the 

physicality of the attack done with hardware tools. This raises the bar for hardware attacks because any 

attacker that wants to perform an attack on the hardware needs to have extensive knowledge of the hardware, 

unlike the software attacks that can be done by just downloading a vulnerability tool on the internet to 

perform attacks. 

2. Generally, the hardware wants to protect a secret so the secret is embedded in a physical object. For 

example, the bank card wants to protect your pin, the pin is encoded in the card and if the attacker can probe 

the chip of the card and read the pin then the card is useless. The secret in the hardware should not be 

writable even though it provides the information on the card when placed on a terminal. If we consider 

STRIDE, we have to consider two main points: the Information Disclosure (Confidentiality) which means 

something is hidden, and Tampering (Integrity) which means it is not writable. 

3. Attack Vectors: The hardware that would be used to protect the secret would be fabricated by someone in 

a factory. The factory will either program the secret onto the hardware or send the hardware to the company 

with memory for read access in one component and write access in another component so that the company 

can program the hardware and destroy the write component to avoid rewriting. This approach can't be used 

for all hardware. For example, subway cards need to be rewritten to every month so in that case, the 

terminals have write access to the card but the user doesn’t have write access so it can’t be overwritten by 

the user. To fabricate the hardware, the laboratory/factory needs to be trusted. And to prove they are 

trustworthy, the laboratory gets certified. The certification body sends people in, to audit them, check out the 

employees and their procedures and conclude whether the laboratory is trusted or not. 

4. Supply Chain: After the hardware has been made, it will be shipped to stores that will sell it or it is 

shipped to the consumers from the store. During shipping it could be intercepted by the attackers and 

tampered with, then re-packaged without the knowledge of the store or the consumers. Also, some attacks 

can be performed on point of sale terminals when some insider (employees) have access to the terminals and 

tampered with it in the warehouse 

5. Accidents: there are a lot of memory based devices (e.g. USB Keys, Digital picture frames) which may 

contain malware in them accidentally, which could affect the system of the user. The company that created 

this hardware may not be aware of the malware on the device. Examples of companies that had this kind of 
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accidents are IBM, Dell, Samsung, HP, Apple, etc. All the attacks stated above are the main reasons for why 

the user might get a bad hardware. 

 2.3   Attack Circuits 

 
RFID, Smart Card, Micro- Controller, ASICS, FPGAs RFID is passive, a signal can be sent to it and it 

responds. It can’t be programmed; it can’t perform any computations based on the signal sent to it. Smart 

card, on the other hand, performs computations based on what was sent to it. Micro-controller is like an ID 

with no chip, ASCIS are fabricated circuits that are custom made to do implementations so all your 

processors and memories are on ASICS. ASICS are expensive because they are custom made, and before the 

design is committed to ASICS, a lot of testing will be done with FPGAs to make sure that circuit actually 

works. FPGAs are programmable chips. When the chip is bought, its blank and it can be programmed with 

software to do whatever you want. They are not as fast as ASCIS because they are general purpose. FPGAs 

are faster than software but slower than ASCIS. Why are we attacking Circuits? The main reason for 

attacking circuits is to recover a secret that had been encoded on a piece of hardware or for the attacker to 

program a certain value to the circuit. The secret could be the actual algorithm itself. Some attackers reverse 

engineer the algorithm of the RFID or Smart Card to find flaws in the algorithm itself. This is because some 

developer wants to keep the algorithm used to protect the circuit a secret due to the fact that the developers 

are not using a standard algorithm. The algorithm used should be a standard algorithm so as to know how to 

better protect it. The Circuit attacks are: 

1. Black Box Testing: To perform this attack, the attacker sends an input to the circuit and receives an 

output. Based on the input and output behavior, the attacker will decide what kind of algorithm to used. An 

example is Speed Gas RFID which are proprietary stream cipher. The attackers found the documentation and 

modified it to discover the cipher used and break the circuit. This type of attack is non-invasive, meaning 

that the card/chip will not be destroyed when probed so it can be used another time. Another method that can 

be used in black boxing is fuzzing in software security which allows large random inputs to the circuit and 

get strange responses like undocumented features, factory testing, etc. 

2. Physical Probing: To perform this attack the attacker sticks a probe unto the chip itself and reads data off 

the chip. Within a circuit, there is a wire that connects components to each other called the bus and the bus is 

where the information would be read as the data is moving around in the bus. The data can also be read off 

the memory location in the circuit. The probe can have a submission precision and it’s an invasive method. 

A lot of circuits are driven by a clock, and if the attacker can slow down the clock it gives a lot of time to the 

attacker to read the voltage of the circuit 

. 3. Reverse Engineering: To perform this attacker, the attacker must acquire the smart card and physically 

expose the circuit. The smart card is manufactured with different layers and each layer is removed until the 
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physical circuit is exposed. The attacker then takes high resolution photographs of the circuit and uploads it 

to a computer and uses a code and machine learning application to figure out what the actual circuit does. 

Once the circuit is figured out, then the algorithm used in the smart card also is exposed and the algorithm 

can be broken. An example of a smart card where the reverse engineering attack was performed on is the 

Mifare (Subway card). 

4. Fault Generation: Some technologies fail. E.g. A TV providers sends a message to the client asking if 

the clients wants to renew the subscription. If TV providers don’t receive a message NO from the clients, 

they don’t disconnect, so the clients are granted access. So some clients can just cut the power at the right 

time to prevent the response to the TV providers, since they won’t disconnect with no response. This is a 

non-invasive attack. Other things that can be done are modifying the memory contents (non-invasive), glitch 

(rapid change) the power or clock (non-invasive), heating up components e.g. with a user (semi- invasive), 

modify chip e.g. cutting wires (invasive) etc. 

5. Side Channel Analysis: To perform this attack, the attackers makes use of the hardware normally but 

makes sensitive measure of certain things and based on the measurements done, the attacker can infer 

secrets. An example of things to measure is power (the amount of voltage in an ATM), timing analysis in 

cryptography (software effect), electromagnetic emission, acoustic sounds (performed on RSA). These are 

called side channel because they are outside the normal channels. They are non-invasive. It is slower than  

the normal attacks. 

 2.4   Counter Measures 

 
1. Obfuscate data (Scramble, encrypt) on buses 

 
2. Obfuscate the ASICS layout, 3D stacking 

 
3. Metal mesh on top of the circuit (if the circuit is probed, it causes a short and the memory resets) 

 
4. Side Channel: physical shields, asynchronous circuits. 

 
Also, a decrease in the signals from the circuits of the hardware like the noise or add artificial noise or low 

the circuit’s power METHODOLOGIES There is no good methodology for hardware (that means no static 

analysis or dynamic analysis of hardware). It is an open question that needs to be researched on. Most of it 

has to do with domain specific knowledge and it is advisable to follow the requirement engineering process. 

Common criteria/NIST has protection profiles which provide the properties not how to achieve them. 

 2.5   Hardware Trojan: 
 

A hardware Trojan can be described as a malicious alteration or inclusion to an integrated circuit 

(IC) that will either alter its intended function or cause it to perform an additional malicious function. 



 

Cryptographic Hardware Hardware Trojan 
Output 

Input 
 

 

 

Fig 2.1: Block Diagram of Hardware Trojan Inserted Circuit 
 

These malicious inclusions or alterations are generally programmed to activate only under a specific set of 

circumstances created by an attacker and are extremely hard to detect when in their dormant state. 

Block diagram of typical hardware Trojan inserted circuit is shown in fig2. 1. 
 

As technology advances, so does the demand for IC boards leaving many technology companies without the 

resources to produce secure enough ICs to meet current demands. 

This has pushed companies into the ‘fabless’ trend prevalent in today’s semi-conductor industry, where 

companies are no longer attempting to produce the goods in their own factories, but instead are outsourcing 

the process to cheaper factories abroad .This growth brings with it a significant rise in the level of threat 

posed by hardware Trojans, a threat that directly affects all companies concerned with products that utilize 

ICs. This encompasses many different industries, including the military and telecommunications companies, 

and can potentially affect billions of devices from mobile phones and computers to military grade aviation 

and detection devices, particularly at a time when wireless devices are being introduced as links in critical 

infrastructure, compounding trust and security issues even further. 

 2.5.1   Action Characteristics: 
 

The action characteristics of a hardware Trojan refer to the effect the Trojan will have on the 

execution of its payload. Hardware Trojans will typically fall into one of two categories: implicit or explicit. 

Implicit Trojans will not change the board’s circuitry of the IC; instead, they will perform their malicious 

function in tandem with the intended function of the board. This makes these Trojans easier to detect as they 

tend to cause small path delays on activation and consume more power whilst active. 

In contrast, an explicit Trojan will change the function of the board’s circuitry on activation. This 

can come in the form of a signal alteration or even leaking of information via predefined board pins. These 

Trojans tend to cause distinct path delays as well as large changes in circuit’s capacity 

Hardware Trojan Detection requires overcoming numerous challenges. Namely: 
 

1. Handling large architectures. 
 

2. Being non-destructive to the IC. 
 

3. Being cost effective. 
 

4. Ability to detect Trojans of all sizes. 

11 
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5. Authenticating chips in as small a time frame as possible. 
 

6. Dealing with variations in manufacturing processes. 
 

7. Detecting all Trojan classifications. 
 

8. Detecting Trojans in a reasonable time frame. 
 

There is no single method capable of detecting all types of Hardware Trojans, nor overcoming all 

the challenges described here-above. Over the years, several methods have been developed to detect 

different types of Trojans. These methods are described here-after. 

Physical Inspection One of the most obvious method of detection is physical inspection of the board itself. 

This method is sometimes classified as a failure analysis based technique. Those techniques usually 

comprise two steps: 

(1) Cutting and lifting the molding coat to expose the circuitry; and 

(2) Performing various scans 

Functional Testing Often referred to as Automatic Test Pattern Generation (ATPG) this technique is 

more commonly used to locate manufacturing faults; it has been shown to be effective in detecting hardware 

Trojans. ATPG involves inputs of ports are stimulated and then the output ports are monitored for variations 

that may indicate a hardware Trojan has been activated. Functional testing techniques can also be useful  

when attempting to determine the trigger patterns of conditional Trojans. Built-In-Self-Test Techniques 

Built- In-Self-Test (BIST) techniques are commonly used to detect manufacturing faults and are present in 

many chips. If unknown or malicious logic is detected during these tests a bad checksum result is given, 

although designed to detect manufacturing faults on some occasions these tests can detect hardware Trojans 

Side channel analysis techniques are some of the most commonly used procedures in hardware Trojan 

detection. These techniques generally measure signals such as power and path delay, looking for fluctuations 

potentially caused by Trojans. Side channel analysis can have a high success rate as even in a dormant state 

the Trojans trigger signal will cause some current leakage 

3. Methodology: In order to carry out the investigation our Trojan was designed and loaded onto an Basys 3 

Artix 7 FPGA board. 

Three different detection techniques are demonstrated, the first utilises power analysis techniques as 

well as side channel analysis, allowing security investigators to measure both the power variance, traces and 

current leakage, followed by a concentrated heat measurements using an infrared thermometer, and finally a 

thermal camera test is carried out. The three experiments are carried out using off-the-shelf hardware and are 

applied to both the Trojan-free and Trojan-inserted designs. Attempts are then made to detect the trojan in its 

dormant form. While in in their dormant form Trojans do not perform any malicious actions, however, wait 
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to be activated, through an activation signal, this can be done through the push of a button, or through a 

specific set of instructions. It is however important to be able to detect trojans in their dormant form, before 

they activate and perform malicious actions. 

 

 
 

Fig: 2.2 Simplified architecture of an FPGA showing the trigger points that a Trojan may use. 
 
 

 
Fig: 2.3 Simplified schematic of digital clock manager (DCM) in Xilinx’s Virtex-5 FPGA device 
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Fig: 2.4Diagram showing examples of payloads that can be altered by an implanted Trojan circuit. 
 

 2.5.2   Payload Characteristics 
 

Hardware Trojans can also be classified based on their intended behaviour. Trojans can be inserted 

for causing malfunction or for leaking sensitive information. In the former case, Trojans alter the 

functionality of the design in some way, while Trojans designed for leaking sensitive information may do so 

without modifying the logic functionality of the design. 

Trojans for Malfunction can be further classified into two subcategories based on whether they cause 

logical malfunction or physical malfunction. Trojans presented in the previous sections cause logic 

malfunction by modifying the values in the LUTs, causing undesired routing between two logic modules, 

etc. Fig.2.4 shows additional examples of payloads affected by Trojans. 

Trojans intended to cause physical damage can create electrical conflicts at the I/O ports or at the 

programmable interconnects. Consider the programmable I/O block in Fig. 2.5. When an I/O port is 

configured to be an input by a design, the configuration cells in the I/O block should disable the output block 

to prevent internal conflicts. A counter-based Trojan can be inserted in the foundry which detects the state of 

the I/O port and begins counting. When the counter counts to the final value, the Trojan may enable the 

output logic when the port is configured as an input. This would cause a high short-circuit current to flow 

between the FPGA and the external device, possibly damaging the system. These Trojans are similar to the 

MELT viruses described in except that Trojans causing physical destruction may also be inserted in the 

foundry. 

Since IP designs involve a high development cost and contain sensitive information, security is of 

utmost importance many high-end FPGAs such as Xilinx’s Virtex4 and Virtex5, and Altera’s StratixII and 

StratixIII offer bit-stream encryption to prevent unauthorized cloning of the bit-stream. Fig.2.6 shows the 
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security features in a generic FPGA device that contains the programmable logic array configuration logic 

which controls the programming of the SRAM cells in the logic array, interconnect network, and additional 

modules in the device. The device also contains a decryption module for decrypting the bit-stream using a 

key stored in a non-volatile memory. Security measures in the device 

(1) Prevent the key from being read and sent to a port by clearing the configuration data and keys when a 

read attempt is made, 

(2) Prevent read-back of the configuration data, and 
 

(3) Restrict decryption access after configuration. 
 

However, all of these measures only prevent malicious code in an IP from accessing the key or 

configuration data. Hardware Trojans can leak the IP in two ways: by leaking the decryption key, or by 

leaking the design itself. An attacker in the foundry can insert an extraneous circuit (Fig. 2.6) to tap the wires 

connecting the non-volatile memory and decryption module. Even if the decryption module is implemented 

in the logic array by using a decryption bit-stream as mentioned in , such an instantiated module must have 

access to the non-volatile key for decryption. A copy of the key can be stored in the Trojan, which may then 

leak it through side-channels or covert-channels. Using side-channels, a Trojan can hide the key in the power 

traces or by emitting electromagnetic radiation containing the information and an attacker can observe these 

signals to steal the key. For example, the MOLES Trojan presented in uses a spread-spectrum technique to 

leak the key in the power traces over several clock cycles. Alternatively, a Trojan may also multiplex the 

JTAG port, USB port, or any other programming port to leak the key through covert channels when the ports 

are not being used. Since SRAM-based FPGAs are volatile, an external device must be used to store the 

encrypted design. If an adversary is in possession of the FPGA device loaded with the design, the encrypted 

bit-stream can be stolen by dropping the connection between an FPGA’s programming ports and the external 

device storing the encrypted bit-stream. In other cases, a Trojan may fake a request to the external device to 

send the programming data to the FPGA. This time, however, the Trojan MUXes the bit-stream and rather 

than sending it to the decryption, it may store blocks of the bit-stream at any given time and leak them 

through side-channels or covert-channels. 

 2.5.3   Trojans in CLB/EMB FPGA 
 

Configurable logic blocks (CLBs) and embedded memory blocks are highly flexible, but require 

significant configuration to implement the desired functions. This severely harms the memory or logic 

integration density in FPGA which makes it more amenable for Trojan insertion. Fig.2.7 shows a FPGA 

CLB, which can act as a 2-input look up table, a 4-bit Random Access Memory (RAM), or a 4-bit shift 

register. In Fig2.7a the inserted Trojan has been shown in red: the trigger condition is derived from the 

memory content of two consecutive RAM locations, and can harm the shift register functionality or the write 
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enable functionality of the memory block at run-time. The trigger condition can also be generated from the 

output of other CLBs, or alternatively can be derived from the output of other functional units. Fig.2.7b 

shows a Trojan instance inserted inside an embedded memory block in a commercial FPGA device. Similar 

to a CLB, an EMB is also capable of executing functionalities like shift register, FIFO etc. in addition to 

acting as Random Access Memory. The control circuitry shown in Fig2.7b decides between normal read 

operation and shift register operation inside the EMBs. The inserted logic or Trojan conditionally affects the 

shift operation inside a EMB by using adjacent memory contents and so can be triggered at run-time. It can 

be noted that the similar trigger conditions can also be effectively used to leak the contents of the memory to 

the output port. Such malfunctions can be achieved by changing the address bits of the memory blocks in 

different clock cycles and reading out the immediate next location of the memory in each and every cycle so 

as to obtain the complete memory contents stored in a particular EMB or a set of EMBs. 

Fig 2.5 Programmable I/O block containing hardware Trojans to cause logical and electrical malfunction. 
 

 

 
Fig 2.6 FPGA device with security features for bit-stream decryption. 
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Fig: 2.7 Hardware Trojan inside: (a) a configurable logic block (CLB) and (b) an embedded memory block 

(EMB) of FPGA. 

 2.5.4   Types of Hardware Trojans: 
 

There are different types of hardware Trojans like Combinational, Sequential and Hybrid Trojans as 

shown in fig2.8 

 

 

Fig2.8: Types of Hardware Trojans 

 
 2.5.5   Example Attack 

 
The example attack is on a CHIP & PIN. The attack is CICA 2000 and it was performed in the 

United Kingdom. It’s actually a protocol attack, but in order to perform it, you need customized hardware. 

The basic hardware used is the bank card. The bank card might have been stolen and the attacker didn’t 
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know the pin to the card, but wants to buys something with the card without the pin. This attack can’t be 

performed on an ATM because it uses a different protocol, it can only be performed on a handout terminals 

at a store. 

 

 
Fig2.9 Simplified diagram of Protocol used 

 

 
Fig2.10:The Attack 

 
Issues of this attack 

 
1. The Pin (Invalid not signed) 

 
2. Details used in the protocol is not enough 

 
3. Card Detail : Terminal can’t parse only bank. 

 
 2.6   Real Life Implementation 

 

The attacker would need the stolen card, a card reader, a laptop, a circuit (FPGA), wire and a fake 

card. 
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Fig2.11: Real life implementation of Chin & Pin attack 

 
In the diagram above, the attacker would stick the card in a card reader and the card reader is placed 

in a computer, the computer is connected to a circuit like an FPGA. The attacker then have a wire that runs 

to a fake bank card that is in the terminal. The wire is attached to the circuit which was attached to the 

computer that the card reader which contains the real card is inserted. This is the Man-in-the-middle device, 

the stolen card would transfer all the information on the card to the fake card in the terminal. To perform this 

attack in real life, all the equipment would be placed in a bag pack and the wire would be passed inside the 

cloth and since by law the cashier is not supposed to touch the card, the fake card is inserted with the wire on 

the circuit and the attack is performed. This attacked happened in the UK but this kind of attack cannot 

happen in Canada. 
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   3.1  What is FPGA? 

   CHAPTER 3 
 

INTRODUCTION TO FPGA 

 

A field-programmable gate array (FPGA) is designed to be configured by a customer or a designer 

after manufacturing – hence the term "field-programmable". The FPGA configuration is generally specified 

using a hardware description language (HDL), similar to that used for an application-specific integrated 

circuit (ASIC). Circuit diagrams were previously used to specify the configuration, but this is increasingly 

rare due to the advent of electronic design automation tools. 

FPGAs contain an array of programmable logic blocks, and a hierarchy of reconfigurable 

interconnects that allow the blocks to be "wired together", like many logic gates that can be inter-wired in 

different configurations. Logic block-scan be configured to perform complex combinational functions, or 

merely simple logic gates like AND and XOR. In most FPGAs, logic blocks also include memory elements, 

which may be simple flip-flops or more complete blocks of memory. Many FPGAs can be reprogrammed to 

implement different logic functions allowing flexible reconfigurable computing as performed in computer 

software. 

 3.2   THEORY 

 
Altera was founded in 1983 and delivered the industry's first reprogrammable logic device in 1984 – 

the EP300 – which featured a quartz window in the package that allowed users to shine an ultra-violet lamp 

on the die to erase the EPROM cells that held the device configuration. In December 2015, Intel acquired 

Altera. 

Xilinx co-founders Ross Freeman and Bernard Vonderschmitt invented the first commercially viable 

field-programmable gate array in 1985 – the XC2064. The XC2064 had programmable gates and 

programmable interconnects between gates, the beginnings of a new technology and market. The XC2064 

had 64 configurable logic blocks (CLBs), with two three-input lookup tables (LUTs). More than 20 years 

later, Freeman was entered into the National Inventors Hall of Fame for his invention. 

 

Notes: 

 
1. Each 7 series FPGA slice contains four LUTs and eight flip-flops; only some slices can use their LUTs 

as distributed RAM or SRLs. 

 

2. Each DSP slice contains a pre-adder, a 25 x 18 multiplier, an adder, and an accumulator. 
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3. Block RAMs are fundamentally 36 Kb in size; each block can also be used as two independent 18 Kb 

blocks. 

 

4. Each CMT contains one MMCM and one PLL. 

 
5. Artix-7 FPGA Interface Blocks for PCI Express support up to x4 Gen 2. 

 
6. Does not include configuration Bank 0. 

 
7. This number does not include GTP transceivers. 

 

 

 

 
Fig3.1 Xilinx Artix 7 FPGA Trainer kit 

 
 

 
Fig3.2 Port numbers of Artix7 FPGA Trainer kit 
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Table 3.1: Artix-7 FPGA Feature Summary by Device 
 

 

  Configurable Logic         

 

 
Slices(1) 

Max 

 

Distributed 

 

 
18 

 

 
36 

 

 
Max 

XC7A12 12,80 2,000 171 40 40 20 720 3 1 2 1 3 150 

XC7A15 16,64 2,600 200 45 50 25 900 5 1 4 1 5 250 

XC7A25 23,36 3,650 313 80 90 45 1,620 3 1 4 1 3 150 

XC7A35 33,28 5,200 400 90 100 50 1,800 5 1 4 1 5 250 

XC7A50 52,16 8,150 600 12 150 75 2,700 5 1 4 1 5 250 

XC7A75 75,52 11,800 892 18 210 105 3,780 6 1 8 1 6 300 

XC7A10 101,4 15,850 1,188 24 270 135 4,860 6 1 8 1 6 300 

XC7A20 215,3 33,650 2,888 74 730 365 13,14 10 1 16 1 10 500 
 

 
 

Table3. 2: Artix-7 FPGA Device-Package Combinations and Maximum I/Os 
 

 

Packa CPG23 CPG23 CSG32 CSG32 FTG25 SBG48 FGG4 FBG48 FGG6 FBG67 FFG11 

Size 10 x 10 10 x 10 15 x 15 15 x 15 17 x 17 19 x 19 23 x 23 23 x 23 27 x 27 27 x 27 35 x 35 

Ball            

  I/O  I/O  I/O  I/O  I/O  I/O  I/O  I/O  I/O  I/O  I/O 

HR HR HR HR HR HR HR HR HR HR HR 

XC7A 

12T 

  2 112   2 150               

XC7A 2 106   0 210 4 150 0 170   4 250         

XC7A   2 112   4 150               

XC7A 2 106   0 210 4 150 0 170   4 250         

XC7A 2 106   0 210 4 150 0 170   4 250         

XC7A     0 210   0 170   4 285   8 300     

XC7A     0 210   0 170   4 285   8 300     

XC7A           4 285   4 285   8 400 16 500 
 

 
 

1. All packages listed are Pb-free (SBG, FBG, FFG with exemption 15). Some packages are available in 

Pb option. 

2. Devices in FGG484 and FBG484 are footprint compatible. 

 
3. Devices in FGG676 and FBG676 are footprint compatible. 

 
4. GTP transceivers in CP, CS, FT, and FG packages support data rates up to 6.25 Gb/s. 
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5. HR = High-range I/O with support for I/O voltage from 1.2V to 3.3V. 

 
1. Power Supplies: 

 

The Nexys 4 board can receive power from the Digilent USB-JTAG port (J6) or from an external 

power supply. Jumper JP3 (near the power jack) determines which source is used. All Nexys 4 power 

supplies can be turned on and off by a single logic-level power switch (SW16). A power-good LED 

(LD22), driven by the “power good” output of the ADP2118 supply, indicates that the supplies are turned 

on and operating normally. 

2. FPGA Configuration: 

 

After power-on, the Artix-7 FPGA must be configured (or programmed) before it can perform any 

functions. You can configure the FPGA in one of four ways: 

1. A PC can use the Digilent USB-JTAG circuitry (portJ6, labeled “PROG”) to program the FPGA any 

time the power is on. 

2. A file stored in the nonvolatile serial (SPI) flash device can be transferred to the FPGA using the SPI 

port. 

3. A programming file can be transferred to the FPGA from a micro SD card. 

 

4. A programming file can be transferred from a USB memory stick attached to the USB HID port. 

 

The FPGA is made of SRAM (Volatile Memory) so the data configured inside FPGA lost at power Off 

state. FPGA Configuration is the process of loading the FPGA chip with Configuration data through 

external devices during power On state. 

The Method of Configuring FPGA Can be divided into 

 
• Master Mode 

• Slave Mode 

• JTAG Mode 
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Master Modes 
 

In the Master Mode the Configuration data is stored in external nonvolatile memories such us SPI 

FLASH, Parallel FLASH, PROM and so on. During configuration process the data is loaded in the FPGA 

Configurable Logic Blocks to operate as a specific application. The configuration clock is provided by 

FPGA in Master Mode operation. 

 

 
Fig 3.3 FPGA Configure through External PROM 

 

 
Fig 3.4FPGA Configure through SPI FLASH Memory 
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Fig 3.5 FPGA Configure through Internal FLASH 

 
Slave Mode 

 

In Slave Mode, The entire configuration Process is controlled by External device. Those External 

device may be of processor, Microcontroller, and so on. The configuration can perform serially or parallel 

method. The Clock input is supplied by the external device for Slave mode. 
 
 

 
Fig 3.6: Slave Mode 

 
JTAG Connection 

 

The four-wire JTAG interface is common on board testers and debugging hardware. FPGA mainly 

uses JTAG interface for prototype download and debugging. JTAG consists of TCK, TMS, TDI and TDO 

lines for communication. 
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Fig 3.7: JTAG connection 
 

3. Memory: 
 

 

The Nexys 4 board contains two external memories: a 128Mbit Cellular RAM (pseudo-static 

DRAM) and a 128Mbit non-volatile serial Flash device. The Cellular RAM has an SRAM interface, and 

the serial Flash is on a dedicated quad-mode (x4) SPI bus. The connections and pin assignments between 

the FPGA and external memories 

4. Ethernet PHY: 

 

The Nexys 4 board includes an SMSC 10/100 Ethernet PHY (SMSC part number LAN8720A)  

paired with an RJ-45 Ethernet jack with integrated magnetic. The SMSC PHY uses the RMII interface and 

supports 10/100 Mb/s. At power-on reset, the PHY is set to the following defaults: 

• RMII mode interface 

 

• Auto-negotiation enabled, advertising all 10/100 mode capable 

 

• PHY address=00001 

 

 3.3   Overview of FPGA 

 

The Nexys4 DDR board is a complete, ready-to-use digital circuit development platform based on  

the latest Artix-7™ Field Programmable Gate Array (FPGA) from Xilinx®. With its large, high-capacity 

FPGA (Xilinx part number XC7A100T-1CSG324C), generous external memories, and collection of USB, 

Ethernet, and other ports, the Nexys4 DDR can host designs ranging from introductory combinational 
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circuits to powerful embedded processors. Several built-in peripherals, including an accelerometer, 

temperature sensor, MEMs digital microphone, a speaker amplifier, and several I/O devices allow the 

Nexys4 DDR to be used for a wide range of designs without needing any other components. 

The Artix-7 FPGA is optimized for high performance logic, and offers more capacity, higher performance, 

and more resources than earlier designs. Artix-7 100T features include: 

• 15,850 logic slices, each with four 6-input LUTs and 8 flip-flops 

• 4,860 Kbits of fast block RAM 

• Six clock management tiles, each with phase-locked loop (PLL) 

• 240 DSP slices 

• Internal clock speeds exceeding 450 MHz On-chip analog-to-digital converter (XADC) 

The Nexys4 DDR also offers an improved collection of ports and peripherals, including: 

• 16 user switches 

• 16 user LEDs 

• Two 4-digit 7-segment displays 

• USB-UART Bridge 

• Two tri-color LEDs 

• Micro SD card connector 

• 12-bit VGA output 

• PWM audio output 

• PDM microphone 

• 3-axis accelerometer 

• Temperature sensor 

• 10/100 Ethernet PHY 

• 128MiB DDR2 

• Serial Flash 

• Four Pmod ports 

• Pmod for XADC signals 

• Digilent USB-JTAG port for FPGA programming and communication 

• USB HID Host for mice, keyboards and memory sticks 

 
The Nexys4 DDR is compatible with Xilinx’s new high-performance Vivado® Design Suite as well as the 

ISE® toolset, which includes ChipScope™ and EDK. Xilinx offers free WebPACK™ versions of these 

toolsets, so designs can be implemented at no additional cost. The Nexys4 DDR is not supported by the 

Digilent Adept Utility. 
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• Logic blocks 

– to implement combinational 

and sequential logic 

• Interconnect 

– wires to connect inputs and 

outputs to logic blocks 

• I/O blocks 

– special logic blocks at periphery 

of device for external connections 

• Key questions: 

– How to make logic blocks programmable? 

– How to connect the wires? 

– After the chip has been fabricated? 
 

 

 

 

 

I/O Ports 

 

 

Interconnects 

 

 

 

 
Logic Blocks 

 

Fig3.8 Block diagram of FPGA 
 

 3.4   Programmability of FPGAs: 
 

 

• User programmability of CPLDs and FPGAs is achieved via user-programmable switch 

technologies. 

• For CPLDs, floating-gate transistors are used like EPROM or EEPROM. On the other hand, FPGAs 

normally use SRAM (static RAM) or anti fuse technology. 

• Properties of the switches, such as, size, on-resistance, and capacitance dictate trade-offs in 

architecture. 

• In SRAM based FPGAs, there is an SRAM bit corresponding to each of the programmable points 

within the device. 
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• When the device is powered-on or reset, it reads a configuration program from an off-chip memory 

and loads it into on-chip SRAM. 

• The configuration program defines the logic function realized by individual logic blocks and 

interconnections. 

• Devices using SRAM based switching can be reprogrammed easily by just changing the 

configuration program. 

• FPGAs belonging to Xilinx, Plassey, Algotronix, Concurrent Logic, Toshiba, etc. are SRAM based. 

• SRAM provides fast re-programmability at the cost of large area (at least five transistors for cell and 

one for switch). 

 

Comparison between programming techniques 
 

 

Name Whether 

 

reprogrammable 

Whether volatile Technology 

Fuse No No Bi-polar 

EPROM Yes, out of circuit No UVCMOS 

EEPROM Yes, in circuit No EECMOS 

SRAM Yes, in circuit Yes CMOS 

Anti FUSE No No CMOS+ 

Table3.3 Comparison between programming techniques 
 

 

 

 

 3.5   FPGA Logic Blocks 

 
• There are wide variations in the logic block structure of FPGAs available from different vendors. 

• They vary in number of inputs and outputs, amount of area consumed, complexity of logic functions 

that they can realize, total number of transistors needed, and so on. 

• The logic blocks can broadly be classified into the following two categories – Fine Grain, Coarse 

Grain 

Fine Grain Logic Block 

 
• The block contains a few transistors that can be interconnected via programming. 

• Cross point FPGA uses a single transistor pair for each Boolean variable in the logic block. 
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Fig3.9 Schematic diagram of FPGA Logic blocks 

 
Coarse Grain Block – XC4000 from Xilinx 

 
 

 
Fig3.10 Schematic diagram of coarse grain block 
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FPGA Design Flow 
 

 

Fig3.11 Schematic diagram of FPGA Design flow 
 

 3.6   Modern FPGA’s 
 

• In addition to the basic blocks (such as, logic blocks, I/O blocks and interconnects), modern FPGAs 

have additional units that make the design process simpler and more efficient. 

• The two major system components, difficult to implement in FPGAs are embedded memories and 

blocks for arithmetic calculations. 

• Amongst the various calculations, multiplication is the most widely used one. Most of the modern 

FPGAs contain embedded logic blocks for multiplication and memories to hold data. DSP 

functionalities are highly facilitated by the availability of these. 

• In many applications, FPGAs need to communicate with microprocessors. This has motivated many 

FPGA vendors to embed soft processor cores within FPGAs. This reduces the latency of 

communication between the microprocessor and the FPGA. 
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 4.1 What is HDL 

CHAPTER4 
 

Verilog Hardware Description Language 

 

Hardware description language (HDL) is a specialized computer language used to program electronic 

and digital logic circuits. The structure, operation and design of the circuits are programmable using HDL. 

HDL includes a textual description consisting of operators, expressions, statements, inputs and outputs. 

Instead of generating a computer executable file, the HDL compilers provide a gate map. The gate map 

obtained is then downloaded to the programming device to check the operations of the desired circuit. The 

language helps to describe any digital circuit in the form of structural, behavioural and gate level and it is 

found to be an excellent programming language for FPGAs and CPLDs. The three common HDLs are 

Verilog, VHDL, and SystemC. 

 4.2   Importance of HDLs 
 

HDLs have many advantages compared to traditional schematic-based design. 
 

• Designs can be described at a very abstract level by use of HDLs. Designers can write their RTL 

description without choosing a specific fabrication technology. Logic synthesis tools can automatically 

convert the design to any fabrication technology. If a new technology emerges, designers do not need to 

redesign their circuit. They simply input the RTL description to the logic synthesis tool and create a new 

gate-level net-list, using the new fabrication technology. The logic synthesis tool will optimize the circuit in 

area and timing for the new technology. 

• By describing designs in HDLs, functional verification of the design can be done early in the design cycle. 

Since designers work at the RTL level, they can optimize and modify the RTL description until it meets the 

desired functionality. Most design bugs are eliminated at this point. This cuts down design cycle time 

significantly because the probability of hitting a functional bug at a later time in the gate-level netlist or 

physical layout is minimized. 

• Designing with HDLs is analogous to computer programming. A textual description with comments is an 

easier way to develop and debug circuits. This also provides a concise representation of the design, 

compared to gate-level schematics. Gate-level schematics are almost incomprehensible for very complex 

designs. 

 4.3   Introduction to Verilog HDL 
 

Verilog HDL is one of the two most common Hardware Description Languages (HDL) used by 

integrated circuit (IC) designers. The other one is VHDL. HDL’s allows the design to be simulated earlier in 

the design cycle in order to correct errors or experiment with different architectures. Designs described in 

HDL are technology-independent, easy to design and debug, and are usually more readable than schematics, 

particularly for large circuits. 

Verilog can be used to describe designs at four levels of abstraction: 

 

(i) Algorithmic level (much like c code with if, case and loop statements). 

(ii) Register transfer level (RTL uses registers connected by Boolean equations). 

(iii) Gate level (interconnected AND, NOR etc.). 
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(iv) Switch level (the switches are MOS transistors inside gates). 

The language also defines constructs that can be used to control the input and output of simulation. 
 

Verilog has a variety of constructs as part of it. All are aimed at providing a functionally tested and a 

verified design description for the target FPGA or ASIC. The language has a dual function – one fulfilling 

the need for a design description and the other fulfilling the need for verifying the design for functionality 

and timing constraints like propagation delay, critical path delay, slack, setup, and hold times. 

Verilog as an HDL has been introduced here and its overall structure explained. A widely used 

development tool for simulation and synthesis has been introduced; the brief procedural explanation 

provided suffices to try out the Examples and Exercises in the text. 

 4.4   Module 
 

Any Verilog program begins with a keyword– called a “module.” A module is the name given to any 

system considering it as a black box with input and output terminals as shown in Figure 4.1. The terminals  

of the module are referred to as ‘ports’. The ports attached to a module can be of three types: 

• input ports through which one gets entry into the module; they signify the input signal terminals of 

the module. 

• output ports through which one exits the module; these signify the output signal terminals of the 

module. 

•  inout ports: These represent ports through which one gets entry into the module or exits the 

module; These are terminals through which signals are input to the module sometimes; at some other 

times signals are output from the module through these. 

 

 

 

 

 
Fig 4.1: Representation of a module as black box with its ports. 

 

 

 4.5   Tokens of Verilog 
 

The basic lexical conventions used by Verilog HDL are similar to those in the C programming 

language. Verilog contains a stream of tokens. Tokens can be comments, delimiters, numbers, strings, 

identifiers, and keywords. 
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 4.5.1   Case Sensitivity 
 

Verilog is a case-sensitive language like C. Thus sense, Sense, SENSE, sENse,… etc., are all treated 

as different entities / quantities in Verilog. 

 4.5.2   Keywords 
 

The keywords define the language constructs. A keyword signifies an activity to be carried out, 

initiated, or terminated. As such, a programmer cannot use a keyword for any purpose other than that it is 

intended for. All keywords in Verilog are in small letters and require to be used as such (since Verilog is a 

case-sensitive language). All keywords appear in the text in New Courier Bold-type letters. 

Examples 
 

module <- signifies the beginning of a module definition. 
 

endmodule <- signifies the end of a module definition. 
 

    begin<- signifies the beginning of a block of statements. end<- signifies the end of a block of statements. 
 

if <- signifies a conditional activity to be checked 
 

    while<- signifies a conditional activity to be carried out. 
 

 4.5.3   Operators 
 

Operators are of three types: unary, binary, and ternary. Unary operators precede the operand. Binary 

operators appear between two operands. Ternary operators have two separate operators that separate three 

operands. 

Examples 
 

    a = ~ b; // ~ is a unary operator. b is the operand 
 

a = b && c; // && is a binary operator. b and c are operands    

a = b ? c : d; // ?: is a ternary operator. b, c and d are operands 

 4.5.4   Data Types 
 

There are two groups of types, "net data types" and "variable data types." 

 

An identifier of "net data type" means that it must be driven. The value changes when the driver changes 

value. These identifiers basically represent wires and are used to connect components. 

"net data types" are: wire, supply0, supply1, tri, triand, trior,tri0, tri1, wand, wor "net data types" can 

have strength modifiers: supply0, supply1,strong0, strong1, pull0, pull1, weak0, weak1,highz0, highz1, 

small, medium, large. 

Some "net data types" can take modifiers: signed, vectored, scalar. 

 

An identifier of "variable data type" means that it changes value upon assignment and holds its value until 

another assignment. This is a traditional programming language variable and is used in sequential 

statements. 
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"Variable data types" are: integer, real, realtime, reg, time. 

integer is typically a 32 bit twos complement integer. 

real is typically a 64 bit IEEE floating point number. 

 

real time is of type real used for storing time as a floating point value. 

 

reg is by default a one bit unsigned value. 

The reg variable data type may have a modifier signed, and may have may bits by using the vector modifier 

msb:lsb]. 

 
 

Scalars and Vectors 
 

Entities representing single bits — whether the bit is stored, changed, or transferred — are called 

“scalars.” Often multiple lines carry signals in a cluster – like data bus, address bus, and so on. Similarly, a 

group of regs stores a value, which may be assigned, changed, and handled together. The collection here is 

treated as a “vector.” Figure 4.2 illustrates the difference between a scalar and a vector. wr and rd are two 

scalar nets connecting two circuit blocks circuit1 and circuit2. b is a 4-bit-wide vector net connecting the 

same two blocks. [b0], [b1], [b2], and [b3] are the individual bits of vector b. They are “part vectors.” 

A vector reg or net is declared at the outset in a Verilog program and hence treated as such. The 

range of a vector is specified by a set of 2 digits (or expressions evaluating to a digit) with a colon in 

between the two. The combination is enclosed [ within square brackets. 

 

 

Fig 4.2: Illustration of Scalars and Vectors 
 

Examples: 
 

wire [ 3:0] a; /* a is a four bit vector of net type; the bits are designated as [ a3], [ a2], [ a1] and [ a0]. */ 
 

reg [ 2:0] b;  /* b is a three bit vector of reg type; the bits are designated as [ b2], [ b1] and [ b0]. */ 
 

reg [ 4:2] c;  /* c is a three bit vector of reg type; the bits are designated as [ c4], [ c3] and [ c2]. */ 
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wire [ -2:2] d ; /* d is a 5 bit vector with individual bits designated as [ d-2], [ d-1], [ d0], [ d1] and [ d2]. 

*/ 
 

Whenever a range is not specified for a net or a reg, the same is treated as a scalar – a single bit quantity. In 

the range specification of a vector the most significant bit and the least significant bit can be assigned 

specific integer values. These can also be expressions evaluating to integer constants – positive or negative. 

Normally vectors – nets or regs – are treated as unsigned quantities. They have to be specifically declared as 

“signed” if so desired. 

Examples 
 

wire signed [ 4:0] num; // num is a vector in the range -16 to +15. 
 

reg signed [ 3:0] num_1; // num_1 is a vector in the range -8 to +7. 
 

 4.5.5   Comments 
 

Comments can be inserted in the code for readability and documentation. There are two ways to 

write comments. A one-line comment starts with "//". Verilog skips from that point to the end of line. A 

multiple-line comment starts with "/*" and ends with "*/". Multiple-line comments cannot be nested. 

However, one-line comments can be embedded in multiple-line comments. 

a = b && c; // This is a one-line comment 
 

/* This is a multiple line comment */ 
 

/* This is /* an illegal */ comment */ 
 

/* This is //a legal comment */ 

 

 

 4.5.6   Number Specification 
 

There are two types of number specification in Verilog they are sized and unsized. 
 

Sized numbers 
 

Sized numbers are represented as <size> '<base format> <number>. 
 

<size> is written only in decimal and specifies the number of bits in the number. Legal base formats are 

decimal ('d or 'D), hexadecimal ('h or 'H), binary ('b or 'B) and octal ('o or 'O). The number is specified as 

consecutive digits from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f. Only a subset of these digits is legal for a 

particular base. Uppercase letters are legal for number specification. 

4'b1111 // This is a 4-bit binary number 

12'habc // This is a 12-bit hexadecimal number 

16'd255 // This is a 16-bit decimal number. 

Un-sized numbers 
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Numbers that are specified without a <base format> specification are decimal numbers by default. 

Numbers that are written without a <size> specification have a default number of bits that is simulator- and 

machine-specific (must be at least 32). 

23456 // This is a 32-bit decimal number by default 

'hc3 // This is a 32-bit hexadecimal number 

'o21 // This is a 32-bit octal number 
 

X or Z values 
 

Verilog has two symbols for unknown and high impedance values. These values are very important 

for modeling real circuits. An unknown value is denoted by an x. A high impedance value is denoted by z. 

12'h13x // This is a 12-bit hex number; 4 least significant bits unknown 

6'hx // This is a 6-bit hex number 

32'bz // This is a 32-bit high impedance number 
 

An X or Z sets four bits for a number in the hexadecimal base, three bits for a number in the octal 

base, and one bit for a number in the binary base. If the most significant bit of a number is 0, X, or Z, the 

number is automatically extended to fill the most significant bits, respectively, with 0, X, or Z. This makes it 

easy to assign X or Z to whole vector. If the most significant digit is 1, then it is also zero extended. 

Negative numbers 
 

Negative numbers can be specified by putting a minus sign before the size for a constant number. 

Size constants are always positive. It is illegal to have a minus sign between <base format> and <number>. 

An optional signed specifier can be added for signed arithmetic. 

-6'd3 // 8-bit negative number stored as 2's complement of 3 
 

-6'sd3 // Used for performing signed integer math 

4'd-2 // Illegal specification 

 

 4.6   Module Declaration: 
 

Modules are the building blocks of Verilog designs. A module can be an element or a collection of 

lower-level design blocks. A module provides the necessary functionality to the higher-level block through 

its port interface (inputs and outputs), but hides the internal implementation. Module interface refers, how 

module communicates with external world. This communication is possible through different ports such as 

input, output and bi-directional (inout) ports. Design functionality is implemented inside module, after port 

declaration. In Verilog, a module is declared by the keyword module. A corresponding keyword endmodule 

must appear at the end of the module definition. Each module must have a module_name, which is the 

identifier for the module, and a port list, which describes the input and output terminals of the module. 

Design functionality is implemented inside module, after port declaration. The design functionality 

implementation part is represented as “body” here. 
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Syntax  

 

module module_name(port_list); 

inputmsb:lsb] input_port_list; 

outputmsb:lsb] output_port_list; 

inoutmsb:lsb] inout_port_list; 

………statements…… 

 
endmodule 

 

NOTE: All module declarations must begin with the module (or macro-module) keyword and end with   

the endmodule keyword. After the module declaration, an identifier is required. A ports list is an option. 

After that, ports declaration is given with declarations of the direction of ports and the optionally type. The 

body of module can be any of the following: 

 

• Any declaration including parameter, function, task, event or any variable declaration. 

• Continuous assignment. 

• Gate, UDP or module instantiation. 

• Specify block. 

• Initial block 

• Always block. 

 

If there is no instantiation inside the module, it will be treated as a top-level module. 

 

Example 

 

module module_1(a, b, c) ; 

 

parameter size = 3 ; 

input size : 0] a, b ; 

output size : 0] c; 

assign c = a & b; 

endmodule 

4.6.1 Module Instantiation 

 

Modules can be instantiated from within other modules. When a module is instantiated, connections 

to the ports of the module must be specified. There are two ways to make port connections. One is 

connection by name, in which variables connected to each of module inputs or outputs are specified in a set 

of parenthesis following the name of the ports. In this method order of connections is not significant (from 

Example 1). 
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The second method is called ordered connection. In this method the order of the ports must match the 

order appearing in the instantiated module (from Example 2). 

 

When ports are connected by name it is illegal to leave any ports unconnected. This may occur when 

ports are connected by order (from Example 3). 

 

What happens if you leave a port unconnected depends on the type of the port. If you are connecting 

net type ports, unconnected bits are driven with high impedance. In other cases, bits are driven with 

unknown values. 

 

Module instantiations can create an array of instances. To create theses instances, range 

specifications have to be declared after the module name. The array of instances can save you time in writing 

code and provide a way to enrich your readability (from Example 4). 

 

Example 1 

 

module dff (clk, d, q); 

input clk, d; 

output q; 

reg q; 
always @(posedge clk) q = d; 

endmodule 

 

module top; 

reg data, clock; 

wire q_out, net_1; 

dff inst_1 (.d(data), .q(net_1), .clk(clock)); 

dff inst_2 (.clk(clock), .d(net_1), .q(q_out)); 

endmodule 

 

In the top module there are two instantiations of the 'dff' module. In both cases port connections are 

done by name, so the port order is insignificant. The first port is input port 'd', the second is output 'q' and the 

last is the clock in the 'inst_1'. In the dff module the order of ports is different than either of the two 

instantiations. 

 

Example 2 

 

module dff (clk, d, q); 

input clk, d; 

output q; 

reg q; 

always @(posedge clk) q = d; 

endmodule 

 

module top; 

reg data, clock; 

wire q_out, net_1; 

dff inst_1 (clock, data, net_1); 

dff inst_2 (clock, net_1, q_out); 

endmodule 

 

Example 3 
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dff inst_1 (clock, , net_1); 

 

Second port is unconnected and has the value Z because it is of the net type. 

 

Example 4 

 

module my_module (a, b, c); 

input a, b; 

output c; 

assign c = a & b ; 

endmodule 

 

module top (a, b, c) ; 

input 3:0] a, b; 

output 3:0] c; 

my_module inst 3:0] (a, b, c); 

endmodule 

 

4.7   Flowchart of Verilog Code 
 
 

 

Fig 4.3: Flowchart representation of Verilog Code 
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Verilog has four levels of Modeling: 

1) The switch level Modeling. 

2) Gate-level Modeling. 

3) The Data-Flow level. 

4) The Behavioural Procedure 

 

1) Switch level Modeling: 

 
A circuit is defined by explicitly showing how to construct it using transistors like pmos and 

nmos, pre-defined modules. 

Example: 

 
module inverter (out, in); 

output out; 

input in; 

supply0gnd; 

supply1 vdd; 

nmosx1 (out, in, gnd); 

pmosx2(out, in, vdd); 

endmodule 

2) Gate level modeling: 

 
A circuit is defined by explicitly showing how to correct it using logic gates, predefined 

modules, and the connections between them. In this first we think of our circuit as a box or 

module which is encapsulated from its outer environment, in such a way that its only 

communication with the outer environment is through input and output ports. We then set out to 

describe the structure within the module by explicitly describing its gates and sub modules, and 

how they connect with one another as well as to the module ports. In other words, structural 

modeling is used to draw a schematic diagram for the circuit. As an example, consider the full- 

adder below. 

Example: 

 
module fulladder (a, b, sum, C out); 
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Input a, b; 

 
output sum, C out; 

xor x1(a, b, y); 

xor x2(a, b, y); 

endmodule 

3) Data-flow modeling: 

Dataflow modelling uses Boolean expressions and operators. In this we use assign statement. 

 
Example : 

 
module fulladder (a, b, sum, C out); 

input a, b; 

output sum, C out; 

assign sum=a^b; 

assign Cout =a^b; 

endmodule 

4) Behavioural modeling: 

It is higher level of modeling where behaviour of logic is modelled. Verilog behavioural 

code is inside procedure blocks, but there is an exception: some behavioural code also exist 

outside procedure blocks. 

There are two types of procedural blocks in Verilog : 

 
Initial: initial blocks execute only once at time zero(start execution at time zero) 

 
Always: always blocks loop to execute over and over again; in other words, as the name 

suggests, it executes always. 

An always statement executes repeatedly, it starts and its execution at 0ns 

 
Syntax: 

 
always@ sensitivitylist) 
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begin 

 
--Procedural statements-- 

end 

Example: 

 
module fulladder (a, b, clk, sum); 

input a, b, clk; 

output sum; 

 
always@ (posedgeclk) 

begin 

sum =a+b; 

endmodule 

4.8   Software Tools 

Used Xilinx Vivado 

2019.2 

Few important terminologies are tasks and functions. They are described below. 

 
Tasks: 

      Tasks are used in all programming languages, generally known as procedures or subroutines. The lines 

of  code are enclosed in task . end task brackets. Data is passed to the task, the processing done, and the result 
returned. They have to be specifically called, with data ins and outs, rather than just wired in to the general 

netlist. Included in the main body of code, they can be called many times, reducing code repetition. 

• tasks are defined in the module in which they are used. It is possible to define a task in a separate file 

and use the compile directive 'include to include the task in the file which instantiates the task. 

• tasks can include timing delays, like posedge, negedge, # delay and wait. 

• tasks can have any number of inputs and outputs. 

• The variables declared within the task are local to that task. The order of declaration within the task 

defines how the variables passed to the task by the caller are used. 

• tasks can take, drive and source global variables, when no local variables are used. When local 

variables are used, basically output is assigned only at the end of task execution. 

• tasks can call another task or function & can be used for modeling both combinational, sequential logic. 

• A task must be specifically called with a statement; it cannot be used within an expression as a 

function can.
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Functions: 

 
A Verilog HDL function is the same as a task, with very little differences, like function cannot drive more 

than one output, can not contain delays. 

• functions are defined in the module in which they are used. It is possible to define functions in 

separate files and use compile directive 'include to include the function in the file which instantiates 

the task. 

• functions can not include timing delays, like posedge, negedge, # delay, which means that functions 

should be executed in "zero" time delay. 

• functions can have any number of inputs but only one output. 

• The variables declared within the function are local to that function. The order of declaration within 

the function defines how the variables passed to the function by the caller are used. 

• functions can take, drive, and source global variables, when no local variables are used. When local 

variables are used, basically output is assigned only at the end of function execution. 

• functions can be used for modeling combinational logic. 

• functions can call other functions, but cannot call tasks. 

 
Steps to be followed to Create a Project in Xilinx Vivado 2019.2 

 
• First open Xilinx Vivado 2019.2 then the Fig 4.4 appears on the screen. 

• Click on Create Project to create a new project. 

 

 
Fig 4.4 Opening window of Xilinx 2019.2 
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• Now a new window appears as shown in Fig 4.5 

 

 
Fig:4.5: Create project window 

 
• Click on NEXT to move further fig 4.6 shows the name and location of the project. 

 

Fig 4.6: Name and Location entry for project 

 
• Select Type of the project fig 4.7 shows type of project. 
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Fig 4.7 Selecting type of the project 
 

• Now select specifications for the required project. Fig 4.8 shows Specifications of the project. 
 

 

 

Fig 4.8.: Specifications window for the project 

 

 

• Fig 4.9 shows summary of the project. 
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Fig 4.9: Summary window of the project 
 

• Sources can be added upon clicking Add Sources. Fig 4.10 appears after following the above steps. 
 

Fig 4.10: Add sources 
 

• Sources are added to the project by clicking on add or create design and a Verilog file name. 
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Fig4.11: Creating source 
 

• Create Verilog files to write code. Fig 4.8.9 and 4.8.10 deals with creating a Verilog file for writing 

the code. 
 

Fig 4.12: Creating file window 
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Fig 4.13: Filename creation window 
 

• Sources will be shown in a new window as in fig 4.8.11 
 

 

 

Fig 4.14: Sources window 
 

• Simulation, Synthesis and implementation can be done by using the side bar options as shown in fig 

4.8.12 
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Fig 4.15 Sidebar for performing required process. 
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5.1 Hardware Trojan 

                            CHAPTER 5  

HARDWARE TROJAN INSERTION AND 

DETECTION 

 

A hardware Trojan can be described as a malicious alteration or inclusion to an integrated circuit (IC) 

that will either alter its intended function or cause it to perform an additional malicious function. These 

malicious inclusions or alterations are generally programmed to activate only under a specific set of 

circumstances created by an attacker and are extremely hard to detect when in their dormant state. As 

technology advances, so does the demand for IC boards leaving many technology companies without the 

resources to produce secure enough ICs to meet current demands. This has pushed companies into the 

‘fabless’ trend prevalent in today’s semi-conductor industry, where companies are no longer attempting to 

produce the goods in their own factories, but instead are outsourcing the process to cheaper factories abroad. 

This growth brings with it a significant rise in the level of threat posed by hardware trojans, a threat that 

directly affects all companies concerned with products that utilise ICs. This encompasses many different 

industries, including the military and telecommunications companies, and can potentially affect billions of 

devices from mobile phones and computers to military grade aviation and detection devices, particularly at a 

time when wireless devices are being introduced as links in critical infrastructure, compounding trust and 

security issues even further. 

 5.2   Algorithm for Trojan Detection 
 

The following steps are to be followed for detecting an hardware trojan. 
 

1. Get the circuit under test 
 

2. Retrieve the path delays and other parameters 

3. i=1 

4. Retrieve ith path 
 

5. Give test vector to circuit under test 
 

6. Measure the path delay and other parameters 
 

7. If delay equal to golden circuit’s delay then go to ‘a’ else go to ‘b’. 
 

a. i=i+1 
 

if i=number of available paths then go to ‘f1’ else go to step-4. 
 

f1. Circuit is trojan free. 
 

b. Circuit is affected. 
 

 5.3   Hardware Trojan Detection Methodologies 
 

In this section, we discuss some detection methods for detecting FPGA hardware Trojans. These 

methods must be used by the FPGA vendors when they receive the chips from the off-shore foundry. We  

assume that the testing facility used by a FPGA vendor is secure, eliminating the possibility that and 
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adversary in the testing facility could intentionally not detect malicious alterations. Detection methods can be 

classified into three categories: Visual detection techniques, logic testing, side-channel analysis and using ring 

oscillators. 

 5.3.1   Visual Detection Methods 
 

This class of detection methods uses imaging to identify any malicious insertions in the chip. These 

techniques include using X-ray imaging, scanning optical microscopy (SOM), scanning electron microscopy 

(SEM) , and Pico-second imaging circuit analysis (PICA), among others. These methods, however, can be 

expensive in cost and analysis time. Moreover, these techniques suffer from lack of resolution to decipher 

logic/ transistor/interconnect level information, primarily due to the obstruction by the stack of metal layers 

in modern FPGAs. With increasing device density due to technology scaling, effectiveness of the imaging 

techniques is expected to reduce significantly. Partial de-layering of ICs appears more effective; however, it 

may in turn render an FPGA non-functional. Due to the above limitations, imaging analysis may not be a 

viable Trojan detection technique. The following shown fig is an example of differentiating active, sleep and 

trojan free circuit. 

    

       5.3.2   Logic-Based Testing 
 

Standard logic testing of FPGAs by automatic test pattern generation (ATPG) tools is used for 

detecting faults. Using input vectors, all the programmable logic blocks can be tested to function correctly 

without faults. For example, a stuck-at-0 fault in the programmable logic blocks can be detected by mapping 

an AND function in the blocks and applying all-1 inputs. However, since Trojan models are very different 

from fault models, a better approach is required to detect Trojans. For example, an attacker can insert a 

Trojan which uses many values of the LUT SRAM cells or configuration cells as trigger nodes, and such a 

Trojan will not be detected using testing based on fault models. Due to the availability of a large number of 

programmable blocks containing countless nodes, exhaustive testing of all combinations of nodes is 

infeasible. For a k-input LUT, having L = 2k cells in the logic block, F = 2pow(2k) distinct functions are 

possible. For an n-input Trojan, the inputs can be chosen in LC2 ways from the L cells. Since each 

combination can in turn be one out of 2n values, the total number of functions that need to be mapped to 

exhaustively test a logic block becomes F = 2pow(2k)*2n. For example, for a 2-input LUT having four cells, 

a 2-input Trojan can be chosen from the four cells in 4C2=6 ways. If the chosen two cells are designated a 

and b, then the trigger values for the Trojan can be ab;(abar)b;a(bbar);(abar)(bbar), requiring 24 functions to 

be mapped. However, since entire functions are mapped onto the LUTs, mapping one function with values 

a;b;c;d can detect several Trojans such as ab;bc;cd, etc., thus requiring fewer functions to be mapped. Still, if 

the trigger nodes are distributed among logic blocks, the sheer number of logic blocks, LUTs, and 

configuration cells makes it impossible for exhaustive testing to be used for Trojan detection. Due to this 

restriction, we propose a statistical approach of iterative self-checking based on the MERO test approach as 

shown in fig 5.1. Then, the cluster size is iteratively increased (e.g.,  to include two neighbouring logic 

blocks) and the process is repeated. Such a statistical approach of testing can be effective since an attacker 

does not know the exact test procedure to cleverly insert malicious circuits. Moreover, for larger 

combinational and sequential Trojans, this approach can be useful to cause partial activation of Trojans for 

detection using side-channel techniques. 
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 5.3.3   Side Channel Analysis 
 

Logic-based testing may not be effective for activating large combinational or sequential Trojans due 

to the extremely large number of possible trigger nodes. Side-channel analysis involves the measurement  

and analysis of information obtained from an IC’s side-channels. The information could be based on timing, 

power consumption, or electromagnetic radiation. Side-channel analysis has been proposed previously as a 

powerful technique to detect malicious insertions in an IC .In this section, we specifically concentrate on 

side-channel information obtained from power consumption in the device. If these Trojans simultaneously 

try to configure the port as an output, then a very large current can be detected by current sensors in the 

device, indicating a malicious modification. Since on-chip current sensors may also be tampered in the 

foundry during production, they must be tested thoroughly to identify any tampering. An alternative and 

secure strategy would be to use an on-board current sensor to detect short-circuit conditions. Trojans which 

do not cause physical damage and only cause logical malfunction may be extremely difficult to detect by 

analyzing static power. The advantage of this type of analysis is that, unlike logic- based testing, a Trojan 

does not have to become active for detection; it merely needs to cause switching in the Trojan to consume 

dynamic power. For the IP-independent Trojans presented in Section 3, transient power analysis can be an 

effective detection method. For example, a counter-based Trojan inserted in the clock manager module can 

be detected by applying a clock signal to the FPGA and applying constant inputs to prevent logic blocks 

from switching. An extraneous counter or any sequential circuit will consume transient power as it 

transitions from one state to another. This contribution to dynamic power can be identified and associated 

with malicious insertions after accounting for process noise and clock coupling power. 

 

      5.3.4   CRC(Cyclic Redundancy Check) 

 

             CRC is generally used in data transmission to check whether the data transmitted is received 

properly. It is based on the cyclic addition of redundant data which encodes the input to check for errors.  

The generating polynomial used in CRC computation is selected based on the hamming distance between 

the outputs and the length of the outputs. 

(i) Simple Majority Voting 

              The simple voting algorithm polls the binary words for the number of ones and zeroes. The output 

bit is   that which forms the majority and it is considered as the correct bit for that particular bit position. At 

the end of the polling, an output word,  the same size as the input word is obtained [4]. Though the  method  

is simple  and fast, it favors the majority which might pose problems when the non-infected CUT/ IPs does 

not constitute the obvious majority of the samples considered. 

          (ii)  Weighted Voting 
 

This method assigns weights to the outputs based on a comparison between bit- streams and the circuit 

whose output has the highest weight is considered the non-infected one. Here, CUT/IPs are trusted gradually 

based on the output  gener-  ated for different input patterns. One of the major advantages of weighted voting 

is that even when the majority (or all) of the circuits under test  is  infected,  it  is possible to identify the 

infected circuits [4, 6]. The major drawbacks  are  the algorithm biased towards 1’s. 
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         (iii)  Outline of Weighted Voting Algorithm 

 

                  Voting algorithm selects the higher weighed CUT/IP bit. Each CUT/IP’s initial weight counter is 

zero as mentioned in [4, 6], After each cycle, voting algorithm calculates the sum of weights for each IC 

cores resulting logical one and sum of weights for each CUT/IP resulting logical zero. Then it compares both 

the sums. The higher sum will be considered the correct result bit and the voted output, and the lower sum is 

the infected CUT/IP bit. Weight counters are increased by one for all CUT/IP which produces the same result 

as clear bit and the weight counters of disagreeing result CUT/IP’s are right shifted [6]. It is done to simplify 

the hardware implementation voting circuit. This technique produces supreme results, especially when using 

a minimum number of smaller CUT/IPs units. The proposed Trojan detection method consists of the 

following. 

 

      (iv)  Modified-Weighted Voting Algorithm 

 
The proposed technique improves the existing methods by developing a Modified-Weighted Voting 

Algorithm which overcomes the bias towards 1s and incorporating Cyclic Redundancy Check (CRC) for 

comparison of bit streams. It compares the output bit streams of a sample set of CUTs (Circuit under Threat) 

and identifies the infected circuit(s) based on a Modified Voting Technique and Cyclic Redundancy Check 

(CRC). In order to improve the accuracy of the existing weighted voting algorithm, the following 

modifications are made: equal initialization of weights and removing bias towards 1s by giving equal priority 

to both 1 and 0 in the bit stream.Input Pattern Generator: It has certain predefined patterns which cover the 

critical input patterns. It makes sure every net in the circuit is toggled at least once from 0 to 1 and 1 to 0. 

Thus enabling us to find the infected circuit using very less number of input patterns. Evaluating the 

accuracy of the algorithm by processing the outputs of around 126 varieties of benchmark circuits ISCAS’85 

and ISCAS’S9 circuits with and without Trojan. To efficiently analyze the effect many variations were 

attempted in terms of Trojan type and location of the Trojan. The following Trojan circuits were designed 

and used 

• NAND gate as Trojan 

• Linear-Feedback Shift Register 

• 3-bit asynchronous Counter 

 

  
 

       Fig 5.1 Flowchart of modified-weighted voting algorithm 
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          A simple outline to understand CRC computation is shown in Fig5.4  

                            

                                                       Fig5.2  Simple outline for CRC 

 

           Here, we are inserting a counter based sequential Trojan using verilog hdl in FPGA, and we are 

detecting the Trojan using CRC(cyclic redundancy check) algorithm.  

 Counter based sequential trojan: 

  A large 32-bit counter implemented in the transmitter part of transceiver module which counts the 

number of transmitted data bytes.  

 Once the count value reaches intended count Trojan gets activated. Trojan payload modifies or 

corrupts the transmitted data frame.  

 

 

 

 This counter based Trojan in general goes undetected during simulation because to reach large count 

value takes longer simulation time. Counter is  implemented in the RTL of the design in verilog.  

 

 Explanation of CRC algorithm: 

 CRC stands for cyclic redundancy check. 

 In this technique, we have to transmit bit streams through our transmitter in the form of polynomials 

with coefficients either 0 or 1 

 It uses modulo-2 or exor addition. 

 To generate the Crc code, the transmitter and receiver must agree on generator polynomial denoted as 

G(x) 

 Then the transmitter generates a bit sequence and this bit sequence is called as frame check sequence 

FCS or CRC code. 

 And this CRC code(remainder) is generated , dividing the original data by general polynomial G(x). 

 After that the Crc code is transmitted to receiver along with original input bit stream. Then the receiver 

divides the (original input data +CRC) by the generator polynomial G(x).If the remainder is 0,then it 

does not contain any errors, otherwise there is an error. 

     

(A)   Counter based Sequential Trojan: 

              A large 32-bit counter implemented in the transmitter part of transceiver module which counts 

the number of transmitted data bytes. Once the count value reaches intended count Trojan get 
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activated. Trojan payload modifies or corrupts the transmitted data frame. This counter based Trojan in 

general goes undetected during simulation because to reach large count value takes longer simulation 

time. Counter is implemented in the RTL of the design in verilog shown in below code. 

 

     RTL schematic of counter based sequential Trojan: 

 

          

 

  
 

 

 

 

 

 

 

 

 

 

 

                   FF 

                                            Fig5.3  RTL schematic diagram for counter based sequential Trojan 

 
 The floor planning for the counter based sequential Trojan circuit is shown in fig 5.6 
 

 

 

 

      Floor planning of counter based sequential Trojan: 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

                                   Fig5.4 Floor planning of counter based sequential Trojan circuit 
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  The simulation results for counter based sequential Trojan effected circuit is shown in fig5.7 

   

              
                      

                           Fig5.5 Simulation Results for Counter based sequential Trojan circuit 
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Utilisation/Synthesis report of Trojan insertion: 
 

     

 
 

 

                                                 Table 5.1  Synthesis report for Trojan Insertion 

 

       Power report of Trojan insertion: 

 

 Total on chip power:   11.165w  

 Design power budget:  Not specified 

 Power budget margin:   N/A 

 Junction temperature:   75.9 degrees celsius  

 Thermal margin         :   9.1 degrees celsius  

          Power supplied to off chip devices : 0W 
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      (B)  TROJAN DETECTION 
             

                There are different techniques can be implemented to detector prevent Trojans according to the level of 

trust in each phase of the IC design. For an ASIC, SoC and FPGA majority of these detection techniques can be 

applied with small differences. Detection techniques are applied depending on the targeted design and types of 

hardware Trojans planning to be detected. Here, we have planned to detect the Trojans using CRC technique. 

This work involves the detection of Hardware Trojan in a circuit using an improved voting algorithm employing 

CRC. By this method Trojan can be detected and it obtains the design free from Trojan which shows in the 

experimental result. 

 

       RTL schematic for Trojan detection circuit: 

 

 

         

 

 

 

 

 

 

 

 

 

 
                               Fig5.6 RTL schematic diagram for Trojan detection circuit 

 

 

       Floor planning of CRC detection: 

 

 

 

 

 

 

 

 

 

 

 
 

 

                  

 

                                                      Fig5.7 Floor planning of CRC detection 
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   The simulation results for Trojan Detection circuit is shown in fig5.10 

 

           
 

                                          Fig5.8 Simulation result for Trojan Detection circuit 

   

 Synthesis/Utilisation report of Trojan detection: 

            

 

 
                                             Table 5.2  Synthesis report for Trojan Detection 
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      Trojan detection power report: 

 

     Total on chip power:   33.093 w 

 Design power budget:  Not specified 

 Power budget margin:   N/A 

 Junction temperature:   125 degrees celsius  

 Thermal margin         :   -91 degrees celsius  

              Power supplied to off chip devices : 0W 

 
                The components like LUTs are increased in Trojan inserted circuit. Few components like Slice Registers and 

Registers as flip flops remained same. From this observation we can extract that the number of memory elements utilized 

are same in both Trojan free and Trojan affected circuits. 
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                                                                        CHAPTER 6 
 

                                                  CONCLUSION AND FUTURE WORK 
 

Formal methods are great tool in order to prove that the implementation of an electronic design 

behaves as specified. Hence, we identify equivalence checking as adequate measure in order to reveal 

manipulations of the bit-stream configuration, which is well-known state of the art. However, the big 

problem is that bit-stream verification is not a popular task in today’s field-programmable gate array (FPGA) 

design and verification flows. One of the major reasons for this fact is that bit-stream formats are not 

publicly documented, which makes it hard for third-party verification tool vendors to offer solutions which 

prove that the bit-stream configuration is formally equivalent to the original HDL description. This project 

shows that it is easily possible to inject malicious behaviour into electronic designs using compromised 

design tools without being noticed by neither the designer nor the state-of-the-art tools targeted at Trojan 

detection. Different Trojans can be detected with different methodologies. A single methodology can’t be 

used for all the Trojans detection. Finding a Trojan in a complex circuit takes time so different test vectors 

along with different triggering mechanisms are to implemented on the circuit under test. We first present a 

type of hardware Trojan, counter based hardware Trojan and implement a functional simulation. Finally 32 

bit counter based hardware Trojan is inserted in the transmitted part of transceiver module which counts the 

number of transmitted data bytes. Once the count value reaches intended count Trojan gets activated. Trojan 

payload modifies or corrupts the transmitted data frame. 

In the future we will aim at developing techniques to use thermal imaging for the detection of large 

scale hardware Trojan infection and explore other Trojan taxonomies in more intricate designs and with 

advanced malicious purposes. While we believe this CRC method could be used widely for Trojan detection 

with higher detection accuracry and better capabilities. Future work will compare the technique proposed 

against smaller known Trojans and the process variation and manufacturing variation will be taken into 

account. Furthermore, the number of test vectors for Vivado power estimator will be increased in order to 

increase its accuracy. 
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