
i

CRC – BASED HARDWARE TROJAN DETECTION FOR

IMPROVED HARDWARE SECURITY

A Project report submitted in partial fulfillment of the requirements for

the award of the degree of

BACHELOR OF TECHNOLOGY

IN

ELECTRONICS AND COMMUNICATION ENGINEERING

Submitted by

M.Laxmipriya (317126512087) Ch.Hemasundar (317126512072)

V.L.S.J.Raja (317126512120) Ch.Mounika (318126512L16)

 Under the guidance of

 Mr.P.Devi Pradeep

 Assistant Professor

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

ANIL NEERUKONDA INSTITUTE OF TECHNOLOGY AND SCIENCES

(Permanently Affiliated to AU, Approved by AICTE and Accredited by NBA & NAAC

with ‘A’ Grade)

Sangivalasa, Bheemili mandal, Visakhapatnam Dist.(A.P)-531162

2020-2021

iii

ACKNOWLEDGEMENT

We would like to express our deep gratitude to our project guide Mr.P.Devi Pradeeep

Assistant Professor, Department of Electronics and Communication Engineering,

ANITS, for his guidance with unsurpassed knowledge and immense encouragement. We

are grateful to Dr.V.Rajyalakshmi, Head of the Department, Electronics and

Communication Engineering, for providing us with the required facilities for the

completion of the project work.

We are very much thankful to the Principal and Management, ANITS, Sangivalasa,

for their encouragement and cooperation to carry out this work.

We express our thanks to all teaching faculty of Department of ECE, whose suggestions

during reviews helped us in accomplishment of our project. We would like to thank all

non-teaching staff of the Department of ECE, ANITS for providing great assistance in

accomplishment of our project.

We would like to thank our parents, friends, and classmates for their encouragement

throughout our project duration. At last but not the least, we thank everyone for

supporting us directly or indirectly in completing this project successfully.

PROJECT BATCH STUDENTS

 M. Laxmipriya(317126512087)

 V.L.S.J.Raja(317126512120)

 Ch.Hemasundar(317126512072)

 Ch.Mounika(318126512L16)

iv

CONTENTS

ABSTRACT vi

LIST OF FIGURES vii

LIST OF TABLES x

LIST OF ABBREVATIONS xi

CHAPTER 1 INTRODUCTION 01

 1.1 Project Objective 01

 1.2 Background 01

 1.3 Motivation 03

 1.4 Project Outline 06

CHAPTER 2 HARDWARE SECURITY 07

 2.1 Introduction 07

 2.2 Attacks on Hardware 08

 2.3 Attack Circuits 09

 2.4 Counter Measures 10

 2.5 Hardware Trojan 10

 2.5.1 Action Characteristics 11

 2.5.2 Payload Characteristics 14

 2.5.3 Trojans in CLB/EMB FPGA 15

 2.5.4 Types of Hardware Trojans 17

 2.5.5 Example Attack 17

 2.6 Real Life Implementation 18

CHAPTER 3 INTRODUCTION TO FPGA 20

 3.1 What is FPGA? 20

 3.2 Theory 20

 3.3 Overview of FPGA 26

 3.4 Programmability of FPGAs 28

v

 3.5 FPGA Logic Blocks 29

 3.6 Modern FPGAs 31

CHAPTER 4 VERILOG HDL 32

 4.1 What is HDL? 32

 4.2 Importance of HDLs 32

 4.3 Introduction to Verilog HDL 32

 4.4 Module 33

 4.5 Tokens of Verilog 33

 4.5.1 Case Sensitivity 34

 4.5.2 Keywords 34

 4.5.3 Operators 34

 4.5.4 Data Types 34

 4.5.5 Comments 36

 4.5.6 Number Specification 36

 4.6 Module declaration 37

 4.6.1 Module Instantiation 38

 4.7 Flow Chart of Verilog 40

 4.8 Software Tools Used 43

CHAPTER 5 HARDWARE TROJAN INSERTION AND DETECTION 51

 5.1 Hardware Trojan 51

 5.2 Algorithm for Trojan Detection 51

 5.3 Hardware Trojan Detection Methodologies 51

 5.3.1 Visual Detection 52

 5.3.2 Logic Based Testing 52

 5.3.3 Side Channel Analysis 53

 5.3.4 CRC(Cyclic Redundancy Check) 53

CHAPTER 6 CONCLUSION AND FUTURE WORK 62

REFERENCES 63

vi

 ABSTRACT

One of the most important problems to resolve nowadays is hardware Trojan circuits. End-users need to

get guarantees that their devices are reliable enough, are not controlled by unknown entities, and will not

leak sensitive information. Several methodologies help at solving the problems of hardware Trojans

through the help of “Golden reference”,which is not always available.This arises the need for an efficient

method called as CRC.This is a logic based detection procedure which avoids the requirements of

complex pre-processing procedures like fingerprinting,thermal imaging,segmentation etc. First, a counter

based Trojan is designed and simulated functionally by XILINX VIVADO 2020.2. This Trojan is

designed in Verilog HDL, which is used to target UART module of FPGA onboard. Payload of the Trojan

is to corrupt the transmitted frame after trigger gets activated.Then,CRC algorithm which is designed in

verilog HDL is simulated and implemented onboard for detection of hardware Trojan. The entire circuit

was simulated by simulation tool, and implemented on ARTIX-7 Starter Kit Board. This work involves

the detection of Hardware Trojan in a circuit using an improved voting algorithm employing CRC(Cyclic

Redundancy Check).This logic based detection procedure avoids the requirements of complex pre-

processing procedures like segmentation, fingerprinting, thermal imaging etc. Detection accuracy of this

CRC method is found to be 95.27% based on detailed analysis with infected and non-infected circuits.

vii

LIST OF FIGURES

Fig 1.1 (a) General model of a hardware Trojan circuit realized through malicious

modification of a hardware.

(b) An example of combinational Trojan.

(c) An example of sequential Trojan.

2

Fig 2.1 Block Diagram of Hardware Trojan Inserted Circuit 11

Fig 2.2 Simplified architecture of an FPGA showing the trigger points that a Trojan

may use.

13

Fig 2.3 Simplified schematic of digital clock manager (DCM) in Xilinx’s Virtex-5

FPGA device

13

Fig 2.4 Diagram showing examples of payloads that can be altered by an implanted

Trojan circuit.

14

Fig 2.5 Programmable I/O block containing hardware Trojans to cause logical and

electrical malfunction.

16

Fig 2.6 FPGA device with security features for bitstream decryption. 16

Fig 2.7 Hardware Trojan inside:

(a) A Configurable Logic Block (CLB) and

(b) An Embedded Memory Block (EMB) of FPGA.

17

Fig 2.8 Types of Hardware Trojans 17

Fig 2.9 Simplified diagram of Protocol used 18

Fig 2.10 The Attack 18

Fig 2.11 Real life implementation of Chin & Pin attack 19

Fig 3.1 Xilinx Artix 7 FPGA Trainer kit

21

Fig 3.2 Port numbers of Artix7 FPGA Trainer kit 21

Fig 3.3 FPGA Configure through External PROM 24

viii

Fig 3.4 FPGA Configure through SPI FLASH Memory 24

Fig 3.5 FPGA Configure through Internal FLASH 25

Fig 3.6 Slave Mode 25

Fig 3.7 JTAG connection 26

Fig 3.8 Block diagram of FPGA 28

Fig 3.9 Schematic diagram of FPGA Logic blocks 30

Fig 3.10 Schematic diagram of Coarse grain block 30

Fig 3.11 Schematic diagram of FPGA Design flow 31

Fig 4.1 Representation of a module as black box with its ports. 33

Fig 4.2 Illustration of Scalars and Vectors 35

Fig 4.3 Flowchart representation of Verilog Code 40

Fig 4.4 Opening window of Xilinx 2019.2 44

Fig 4.5 Create project window 45

Fig 4.6 Name and Location entry for project 45

Fig 4.7 Selecting type of the project 46

Fig 4.8 Specifications window for the project 46

Fig 4.9 Summary window of the project 47

Fig 4.10 Add sources 47

Fig 4.11 Creating source 48

Fig 4.12 Creating file window 48

Fig 4.13 Filename creation window 49

Fig 4.14 Sources window 49

Fig 4.15 Sidebar for performing required process. 50

ix

 Fig 5.1 Flowchart of Modified voting algorithm 54

 Fig 5.2

 Fig 5.3

 Fig 5.4

 Fig 5.5

 Fig 5.6

 Fig 5.7

 Fig 5.8

Simple outline for CRC

 RTL schematic diagram for counter based sequential Trojan

 Floor planning of counter based sequential Trojan circuit

 Simulation results for counter based sequential Trojan circuit

 RTL schematic diagram for Trojan detection circuit

 Floor planning of Trojan detection circuit

 Simulation result for Trojan detection circuit

 55

 56

 56

 57

 59

 59

 60

x

LIST of TABLES

Table 3.1 Artix-7 FPGA Feature Summary by Device 22

Table 3.2 Artix-7 FPGA Device-Package Combinations and

Maximum I/Os

22

Table 3.3 Comparison between programming techniques 29

Table 5.1 Synthesis report for Trojan Insertion 58

 Table 5.2 Synthesis report for Trojan Detection 60

xi

LIST OF ABBREVATIONS

HT Hardware Trojan

HTT Hardware Trojan Threat

FPGA Field Programmable Gate Array

MOSFET Metal Oxide Semiconductor Field Effect Transistor

CLB Configurable Logic Blocks

EMB Embedded Memory Blocks

HDL Hardware Description Language

Chapter 1

INTRODUCTION

Nowadays, hardware Trojan protection became a hot topic especially after the horizontal silicon

industry business model. Third party IP is the building block of many critical systems and that arise a

question of confidentiality and reliability of these blocks. In this work, we present novel methods for system

protection and Trojan detection that alleviate the need for a golden chip. In addition, we introduce a scenario

to dynamically remove infected IPs embedded on FPGAs. In this project side-channel analysis and ring

oscillator based approaches were used to detect Hardware Trojan. Dynamic Trojan detection is done using

multiple variant voting. Different methodologies can be implemented for different Trojans.

 1.1 Project Objective

The main objective of the project is to insert a hardware Trojan and detect it using various methods

and thereby compare which type of Trojan is detected efficiently by which type of methods. The hardware

Trojan is nothing but a malicious circuit which is placed in the integrated chip without affecting its normal

functionality. All these detection methods are followed by a flow of process specified as an algorithm in

chapter5.Everytime the Trojan inserted circuit parameters are compared with the golden circuit and then

judge if Trojan is present or not.

Simulation results are obtained for different circuits which are in Chapter 5.

 1.2 Background

Malicious modifications of integrated circuits, referred to as Hardware Trojans, have emerged as a

major security threat due to widespread outsourcing of IC manufacturing to un-trusted foundries. An

adversary can potentially tamper with a design in these fabrication facilities by inserting malicious circuitry,

leading to potentially catastrophic malfunctions in security-critical application domains, such as the military,

government, communications, space, and medicine. Conventional post-manufacturing testing, test

generation algorithms, and test coverage metrics often fail to detect Hardware Trojans due to their diversity,

complexity, and rare triggering conditions. An intelligent adversary can design a Trojan to only trigger under

very rare conditions on an internal node, which is unlikely to arise during post-manufacturing test, but can be

triggered during long hours of in-field operation.

The detection of Trojans by employing side-channel parameters, such as power trace or delay

overhead, is limited due to the large process variations in nano scale IC technologies, detection sensitivities

of small Trojans, and measurement noise. Often these issues mask the effect of Trojan circuits, especially for

ultra small Trojans. From an adversary’s perspective, the desired features for a successful Trojan are as

follows: rarely activated to evade logic based testing, low overhead to evade side-channel based detection

approach, and low side-channel signature to evade Design for Security (DfS) hardening mechanisms. The

 1

2

condition of Trojan activation is referred to as the trigger, and the node affected by the Trojan is referred to

as its payload. Trojans can be classified based on their triggering conditions or payload mechanisms. The

trigger mechanism can be either digital or analog. Digitally triggered Trojans can be classified into

combinational and sequential Trojans. Trojan can also be classified into digital and analog based on the

payload mechanisms. Digital Trojans invert the logic values at internal nodes or modify the contents of

memory locations, while the analog payload Trojans may affect circuit parameters, such as performance,

power, and noise margin.

A combinational Trojan is activated on the simultaneous occurrences of a particular condition at

certain internal nodes, while a sequential Trojan acts as a time-bomb, exhibiting its malicious effect due to a

sequence of rare events after a long period of operation. Fig 1.1(a) illustrates the general scenario of a Trojan

attack in a design, where a Trojan is realized through the malicious modification of the circuit with a trigger

condition and payload. Fig 1.1 (b) shows an example of combinational Trojan which does not contain any

sequential elements, and depends only on the simultaneous occurrence of a set of rare node conditions.

Conversely, the sequential Trojans shown in Fig 1.1 (c) undergo a sequence of state transitions before

triggering a malfunction. The 3-bit counter causes a malfunction at the node S on reaching a particular count,

and the count is increased only when the condition a = 1,b = 0 is satisfied at the positive clock-edge.

Protection against hardware Trojan has been widely explored by researchers. These approaches are based on

the following three approaches:

(1) Specialized functional testing that rely on triggering an unknown Trojan and observing its effect in

output ports of a design;

(2) side-channel analysis that rely on observing a Trojan effect in physical parameters, such as supply

current or path delay and

(3) design/integration approaches that either prevent a Trojan insertion or facilitate detection during

production test.

Fig1.1 (a) General model of a hardware Trojan circuit realized through malicious modification of a

hardware. (b) An example of combinational Trojan. (c) An example of sequential Trojan.

3

 1.3 Motivation

The main idea for working on hardware Trojan detection is to control the cyber crimes to the

maximum extent. For example, in the year 2007 the backdoor built into a Syrian radar system was

responsible for the system’s failure. There are also reports of Trojans being used by the USSR to

intercept American communications during the cold war. Time to activate a hardware Trojan circuit is a

major concern from the authentication standpoint.

It is also a direct threat to the already vulnerable Internet of Things, meaning that wireless-

enabled household devices also become potential targets. The problem is such that even previously

‘reputable’ factories are vulnerable to attacks, since all that is required is one employee to alter the

existing code to include a Trojan. As most IC designs are extremely large and contain a huge amount of

hardware description, these inclusions are difficult to detect and the sheer size of the code can require

many people having access to the code at production level.

Regarding military grade products utilizing ICs, the problem of hardware Trojans is critical with

the threat level of the Trojan being such that it could potentially be catastrophic. Malicious inclusions of

code could cause life saving equipment to fail, missiles to lose control, and cryptography keys to be

leaked. While incidents of hardware Trojans, are not openly discussed there have been a few noted. In

2007, it was assumed that a backdoor built into a Syrian radar system was responsible for the system’s

failure. There are also reports of Trojans being used by the USSR to intercept American

communications during the cold war. The problem is aggravated further still when considered in

relation to the growth in production of counterfeit goods. Such goods may be produced in less than

reputable factories, so the inclusion of malicious code in the production process is far from unrealistic

.As counterfeit goods are not generally sold through trustworthy channels, it is impossible to recall

products found to be unsafe or indeed to produce updated firmware to deal with emerging threats. This

can expose consumers to a plethora of malicious attacks by hackers. For example, a Trojan leaking

cryptography keys in counterfeit IOT devices could potentially give hackers access to a network of

devices that can be utilized in ‘ Mirai’ like attacks and cannot be recalled or patched In this paper, a

hardware Trojan is created and emulated on a consumer FPGA board. The experiments to detect the

Trojan in a dormant and active state are made using off-the-shelf technologies which rely on thermal

imaging, power monitoring, and side-channel analysis.

Unfortunately, those theories are not in nature groundless or out-with the realms of the possible.

In fact several of them have already been instantiated. One such rumor of ‘kill switches’ being hidden

in commercial processors was confirmed by an anonymous U.S. defence contractor who indicated the

culprit to be a ‘European Chip Maker’ .The potential consequence of the existence of such a switch

could be catastrophic. Indeed, as previously highlighted, this particular hardware Trojan was blamed for

the failure of a Syrian radar to detect an incoming air strike for the Threat of the Hardware Trojan.

4

The complexity and cost of the design of ICs has grown exponentially over the last decade as the

semiconductor industry has scaled to sub-micron levels. A typical IC board will go through a rigorous process

consisting of several stages. Firstly, the specifications must be translated into a behavioural description, usually

in a hardware description language such as Verilog or VHDL. Once this has been completed, the next phase is

to perform synthesis to transform the behavioural description into a design implementation using logic gates

such as a net-list. Once the synthesis has been completed, the net-list is implemented as a layout design and the

digital files are passed to the foundry for fabrication. As well as outsourcing the production of ICs, many

companies are also purchasing third party intellectual property (IP) cores, and utilizing third party Electronic

Design Automation (EDA) tools. Each use of third-party software presents a new opportunity for attacks such

as hardware Trojan insertion, IP piracy, IC tampering, and IC cloning. Although these attacks are all of

importance, the hardware Trojan is by far the most dangerous attack, and, as such, has garnered much

attention. At Foundry Level As semiconductor technology has advanced, the cost of owning foundry has

increased dramatically. In 2015, the cost was estimated to be in the region of 5 billion USD. As a direct result

of this, many companies can no longer afford to fund the production process from start to finish, and are

outsourcing their production to cheaper foreign foundries. Whilst undesirable modifications to ICs should

ideally be detectable by pre-silicon verification and simulation, this would require a specific model of the entire

IC design and this is not always readily available particularly where third party IP cores or EDA tools have

been used. In addition, large multi module designs are rarely compliant with exhaustive verification.

Post silicone approaches to design verification include destructive de-packaging and reverse

engineering of the IC. However, current techniques do not allow destructive verification of ICs to be

scalable. It is also possible for an attacker to infect only a portion of the produced ICs, making these tests

futile. Most post silicone logical testing techniques are also unsuitable for detecting hardware Trojans. This

is attributed to the stealthy nature of the hardware Trojan and to the large numbers of differing taxonomy

that can be employed by the attackers. Most hardware Trojans are programmed to activate under a specific

set of conditions, and a skilled attacker would ensure that these conditions were undetectable by the testing

routine. This is particularly true of Trojans targeting sequential finite state machines. Industries Affected

Military Hardware Trojans are a huge threat to many industries. However, security conscious industries,

such as the military, are in a particularly high risk bracket and defence departments are very aware of this.

The U.S. Department of Defense (DoD) has created a “Trusted Foundry Program” to ensure its military

equipment remains free of hardware Trojans by using only accredited foundries. This means that only

American foundries which are located on the Americal soil and which underwent the strictest vetting process

are allowed to work on the chips for the U.S. DoD. In addition to vetting the foundries, close attention is

being paid to the other links in the design and supply chain. While this approach may seem effective, it has

its limitations. The majority of western foundries are woefully behind their foreign counterparts when it

5

comes to the level of technology they can provide. This seriously limits access to more advanced chips which

are required for modern avionics and weapons systems.

If the attacker creates the Trojan through the modification of the existing code, then it will be

classified as a parametric. Typically, this can be achieved by thinning wires or weakening transistors and flip

flops. This type of Trojan is notoriously hard to detect as the alteration can be minuscule. The next physical

characteristic the attacker would have to consider would be the size of the hardware Trojan. In this context,

the size refers to the physical extension of the hardware Trojan or the number of components it consists of.

In case of a large Trojan consisting of many components, an attacker can distribute these across the IC,

placing components where they are necessary to execute their payload in accordance with the functions of

the hardware Trojan. This is known as loose distribution. In contrast, a smaller hardware Trojan consisting

of only a few components allows for the components to be placed together as they will occupy only a small

part of the layout of the IC. This is known as tight distribution.

On rare occasions, a determined attacker could regenerate the layout to encompass the hardware

Trojan, moving the components of the IC to accommodate the components of the hardware Trojan. This is

referred to as a structural alteration Activation Characteristics Typically, a hardware Trojan will be

condition- based, meaning that its activation will be dependent on a trigger defined by the attacker. The

trigger itself will generally consist of either a predefined input pattern, or specific internal logic state, or

counter value, and can be triggered both internally and externally. An externally triggered hardware Trojan

will usually consist of malicious logic within the IC that utilizes an external sensor such as a radio antenna.

The attacker will then communicate via the compromised component enabling them to trigger the antenna. It

is easy to see why this can be extremely dangerous when it comes to security conscious industries such as

the military. It is not out-with the realms of the believable to postulate that an attacker could feasibly re-route

or switch off a missile via a radio signal as suggested.

Conversely, an internally triggered hardware Trojan will look within the circuitry for the set of

conditions that will cause it to activate. A typical example of this would be countdown logic. In contrast to

the condition-based Trojan that will only activate when its trigger conditions are met, the “always-on”

Trojan is active from the moment of insertion, and relies on internal signals. This type of hardware Trojan is

generally split into two categories; combinational and sequential. A combinational Trojan will activate upon

detection of a specific set of circumstances within the internal signals of the IC. Sequential Trojans will also

monitor the internal signals of the IC. However, instead of looking for a specific condition, they activate

when a specific sequence of events occurs.

6

 1.4 Project Outline

The project Hardware Insertion and Detection deals with the hardware security domain where

securing information is vital in this sophisticated contemporary world. Day to day technology has been

improving along with this the loop holes for hackers are becoming more and causing cyber security

problems. In order to prevent and control these problems this project gives a scope to control the problems.

By continuous analysis of the circuit the parameters like path delay can be found changed if Trojan is

present.

A circuit is said to be Trojan affected if its parameters shows a significant change with the parameters of

Trojan free circuit. The Trojan free circuit is called the golden circuit. Different Trojans can be detected

using different methodologies. Most popular and effective methods are side channel analysis and ring

oscillator based detection. All these circuits are simulated using Xilinx Vivado and reports were generated

and the parameter were compared for Trojan free and Trojan effected circuit.

7

CHAPTER 2

HARDWARE SECURITY

 2.1 Introduction

Hardware is a collection of physical elements that constitutes a computer system. Hardware is used

by everyone even if they are not aware of it. Hardware in this context might be:

a. Computer Hardware: Some computer hardware are Processors, firmware, memory etc.

i. Processors: is the electronic circuitry within a computer that carries out the instructions of a computer

program by performing the basic arithmetic, logical, control and input/output (I/O) operations specified by

the instructions

ii. Firmware: is the combination of a hardware device, e.g. an integrated circuit, and computer instructions

and data that reside as read only software on that device

iii. Memory: Memory refers to the device used to store information for use in a computer.

b. Mobile Hardware: Sim Card, RFID/Smart Card, Chip and Pin

i. Sim Card: is an integrated circuit that is intended to securely store the international mobile subscriber

identity (IMSI) and the related key used to identify and authenticate subscribers on mobile telephony devices

(such as mobile phones and computers).

ii. RFID: is the wireless use of electromagnetic fields to transfer data, for the purposes of automatically

identifying and tracking tags attached to objects. For example, an RFID tag attached to an automobile during

production can be used to track its progress through the assembly line.

iii. Smart Card: is any pocket-sized card with embedded integrated circuits. Smart cards are made of plastic,

and can provide strong security authentication for single sign-on (SSO) with large organizations

iv Chip & Pin: "Chip" refers to a computer chip embedded in the smartcard, and "PIN" refers to a personal

identification number that the customer must supply. "Chip and PIN" is also used in a generic sense to mean

any EMV smart card technology that relies on an embedded chip and a PIN.

c. Future Hardware: PUFs (Physically Unclonable Functions) PUFs have a unique fingerprint in a physical

object that means if you have an object with one fingerprint; another object with the same fingerprint cannot

be created. It uses challenge/response for its operations. The challenge/response explains that if a message is

sent to a physical object and the physical object is changed to another physical object, and same message is

8

sent to the second physical object, the two physical objects react differently because of their unique

fingerprint.

 2.2 Attacks on Hardware

1. Physical Attacks: The main thing that differentiates hardware attacks from software attacks is the

physicality of the attack done with hardware tools. This raises the bar for hardware attacks because any

attacker that wants to perform an attack on the hardware needs to have extensive knowledge of the hardware,

unlike the software attacks that can be done by just downloading a vulnerability tool on the internet to

perform attacks.

2. Generally, the hardware wants to protect a secret so the secret is embedded in a physical object. For

example, the bank card wants to protect your pin, the pin is encoded in the card and if the attacker can probe

the chip of the card and read the pin then the card is useless. The secret in the hardware should not be

writable even though it provides the information on the card when placed on a terminal. If we consider

STRIDE, we have to consider two main points: the Information Disclosure (Confidentiality) which means

something is hidden, and Tampering (Integrity) which means it is not writable.

3. Attack Vectors: The hardware that would be used to protect the secret would be fabricated by someone in

a factory. The factory will either program the secret onto the hardware or send the hardware to the company

with memory for read access in one component and write access in another component so that the company

can program the hardware and destroy the write component to avoid rewriting. This approach can't be used

for all hardware. For example, subway cards need to be rewritten to every month so in that case, the

terminals have write access to the card but the user doesn’t have write access so it can’t be overwritten by

the user. To fabricate the hardware, the laboratory/factory needs to be trusted. And to prove they are

trustworthy, the laboratory gets certified. The certification body sends people in, to audit them, check out the

employees and their procedures and conclude whether the laboratory is trusted or not.

4. Supply Chain: After the hardware has been made, it will be shipped to stores that will sell it or it is

shipped to the consumers from the store. During shipping it could be intercepted by the attackers and

tampered with, then re-packaged without the knowledge of the store or the consumers. Also, some attacks

can be performed on point of sale terminals when some insider (employees) have access to the terminals and

tampered with it in the warehouse

5. Accidents: there are a lot of memory based devices (e.g. USB Keys, Digital picture frames) which may

contain malware in them accidentally, which could affect the system of the user. The company that created

this hardware may not be aware of the malware on the device. Examples of companies that had this kind of

9

accidents are IBM, Dell, Samsung, HP, Apple, etc. All the attacks stated above are the main reasons for why

the user might get a bad hardware.

 2.3 Attack Circuits

RFID, Smart Card, Micro- Controller, ASICS, FPGAs RFID is passive, a signal can be sent to it and it

responds. It can’t be programmed; it can’t perform any computations based on the signal sent to it. Smart

card, on the other hand, performs computations based on what was sent to it. Micro-controller is like an ID

with no chip, ASCIS are fabricated circuits that are custom made to do implementations so all your

processors and memories are on ASICS. ASICS are expensive because they are custom made, and before the

design is committed to ASICS, a lot of testing will be done with FPGAs to make sure that circuit actually

works. FPGAs are programmable chips. When the chip is bought, its blank and it can be programmed with

software to do whatever you want. They are not as fast as ASCIS because they are general purpose. FPGAs

are faster than software but slower than ASCIS. Why are we attacking Circuits? The main reason for

attacking circuits is to recover a secret that had been encoded on a piece of hardware or for the attacker to

program a certain value to the circuit. The secret could be the actual algorithm itself. Some attackers reverse

engineer the algorithm of the RFID or Smart Card to find flaws in the algorithm itself. This is because some

developer wants to keep the algorithm used to protect the circuit a secret due to the fact that the developers

are not using a standard algorithm. The algorithm used should be a standard algorithm so as to know how to

better protect it. The Circuit attacks are:

1. Black Box Testing: To perform this attack, the attacker sends an input to the circuit and receives an

output. Based on the input and output behavior, the attacker will decide what kind of algorithm to used. An

example is Speed Gas RFID which are proprietary stream cipher. The attackers found the documentation and

modified it to discover the cipher used and break the circuit. This type of attack is non-invasive, meaning

that the card/chip will not be destroyed when probed so it can be used another time. Another method that can

be used in black boxing is fuzzing in software security which allows large random inputs to the circuit and

get strange responses like undocumented features, factory testing, etc.

2. Physical Probing: To perform this attack the attacker sticks a probe unto the chip itself and reads data off

the chip. Within a circuit, there is a wire that connects components to each other called the bus and the bus is

where the information would be read as the data is moving around in the bus. The data can also be read off

the memory location in the circuit. The probe can have a submission precision and it’s an invasive method.

A lot of circuits are driven by a clock, and if the attacker can slow down the clock it gives a lot of time to the

attacker to read the voltage of the circuit

. 3. Reverse Engineering: To perform this attacker, the attacker must acquire the smart card and physically

expose the circuit. The smart card is manufactured with different layers and each layer is removed until the

10

physical circuit is exposed. The attacker then takes high resolution photographs of the circuit and uploads it

to a computer and uses a code and machine learning application to figure out what the actual circuit does.

Once the circuit is figured out, then the algorithm used in the smart card also is exposed and the algorithm

can be broken. An example of a smart card where the reverse engineering attack was performed on is the

Mifare (Subway card).

4. Fault Generation: Some technologies fail. E.g. A TV providers sends a message to the client asking if

the clients wants to renew the subscription. If TV providers don’t receive a message NO from the clients,

they don’t disconnect, so the clients are granted access. So some clients can just cut the power at the right

time to prevent the response to the TV providers, since they won’t disconnect with no response. This is a

non-invasive attack. Other things that can be done are modifying the memory contents (non-invasive), glitch

(rapid change) the power or clock (non-invasive), heating up components e.g. with a user (semi- invasive),

modify chip e.g. cutting wires (invasive) etc.

5. Side Channel Analysis: To perform this attack, the attackers makes use of the hardware normally but

makes sensitive measure of certain things and based on the measurements done, the attacker can infer

secrets. An example of things to measure is power (the amount of voltage in an ATM), timing analysis in

cryptography (software effect), electromagnetic emission, acoustic sounds (performed on RSA). These are

called side channel because they are outside the normal channels. They are non-invasive. It is slower than

the normal attacks.

 2.4 Counter Measures

1. Obfuscate data (Scramble, encrypt) on buses

2. Obfuscate the ASICS layout, 3D stacking

3. Metal mesh on top of the circuit (if the circuit is probed, it causes a short and the memory resets)

4. Side Channel: physical shields, asynchronous circuits.

Also, a decrease in the signals from the circuits of the hardware like the noise or add artificial noise or low

the circuit’s power METHODOLOGIES There is no good methodology for hardware (that means no static

analysis or dynamic analysis of hardware). It is an open question that needs to be researched on. Most of it

has to do with domain specific knowledge and it is advisable to follow the requirement engineering process.

Common criteria/NIST has protection profiles which provide the properties not how to achieve them.

 2.5 Hardware Trojan:

A hardware Trojan can be described as a malicious alteration or inclusion to an integrated circuit

(IC) that will either alter its intended function or cause it to perform an additional malicious function.

Cryptographic Hardware Hardware Trojan
Output

Input

Fig 2.1: Block Diagram of Hardware Trojan Inserted Circuit

These malicious inclusions or alterations are generally programmed to activate only under a specific set of

circumstances created by an attacker and are extremely hard to detect when in their dormant state.

Block diagram of typical hardware Trojan inserted circuit is shown in fig2. 1.

As technology advances, so does the demand for IC boards leaving many technology companies without the

resources to produce secure enough ICs to meet current demands.

This has pushed companies into the ‘fabless’ trend prevalent in today’s semi-conductor industry, where

companies are no longer attempting to produce the goods in their own factories, but instead are outsourcing

the process to cheaper factories abroad .This growth brings with it a significant rise in the level of threat

posed by hardware Trojans, a threat that directly affects all companies concerned with products that utilize

ICs. This encompasses many different industries, including the military and telecommunications companies,

and can potentially affect billions of devices from mobile phones and computers to military grade aviation

and detection devices, particularly at a time when wireless devices are being introduced as links in critical

infrastructure, compounding trust and security issues even further.

 2.5.1 Action Characteristics:

The action characteristics of a hardware Trojan refer to the effect the Trojan will have on the

execution of its payload. Hardware Trojans will typically fall into one of two categories: implicit or explicit.

Implicit Trojans will not change the board’s circuitry of the IC; instead, they will perform their malicious

function in tandem with the intended function of the board. This makes these Trojans easier to detect as they

tend to cause small path delays on activation and consume more power whilst active.

In contrast, an explicit Trojan will change the function of the board’s circuitry on activation. This

can come in the form of a signal alteration or even leaking of information via predefined board pins. These

Trojans tend to cause distinct path delays as well as large changes in circuit’s capacity

Hardware Trojan Detection requires overcoming numerous challenges. Namely:

1. Handling large architectures.

2. Being non-destructive to the IC.

3. Being cost effective.

4. Ability to detect Trojans of all sizes.

11

12

5. Authenticating chips in as small a time frame as possible.

6. Dealing with variations in manufacturing processes.

7. Detecting all Trojan classifications.

8. Detecting Trojans in a reasonable time frame.

There is no single method capable of detecting all types of Hardware Trojans, nor overcoming all

the challenges described here-above. Over the years, several methods have been developed to detect

different types of Trojans. These methods are described here-after.

Physical Inspection One of the most obvious method of detection is physical inspection of the board itself.

This method is sometimes classified as a failure analysis based technique. Those techniques usually

comprise two steps:

(1) Cutting and lifting the molding coat to expose the circuitry; and

(2) Performing various scans

Functional Testing Often referred to as Automatic Test Pattern Generation (ATPG) this technique is

more commonly used to locate manufacturing faults; it has been shown to be effective in detecting hardware

Trojans. ATPG involves inputs of ports are stimulated and then the output ports are monitored for variations

that may indicate a hardware Trojan has been activated. Functional testing techniques can also be useful

when attempting to determine the trigger patterns of conditional Trojans. Built-In-Self-Test Techniques

Built- In-Self-Test (BIST) techniques are commonly used to detect manufacturing faults and are present in

many chips. If unknown or malicious logic is detected during these tests a bad checksum result is given,

although designed to detect manufacturing faults on some occasions these tests can detect hardware Trojans

Side channel analysis techniques are some of the most commonly used procedures in hardware Trojan

detection. These techniques generally measure signals such as power and path delay, looking for fluctuations

potentially caused by Trojans. Side channel analysis can have a high success rate as even in a dormant state

the Trojans trigger signal will cause some current leakage

3. Methodology: In order to carry out the investigation our Trojan was designed and loaded onto an Basys 3

Artix 7 FPGA board.

Three different detection techniques are demonstrated, the first utilises power analysis techniques as

well as side channel analysis, allowing security investigators to measure both the power variance, traces and

current leakage, followed by a concentrated heat measurements using an infrared thermometer, and finally a

thermal camera test is carried out. The three experiments are carried out using off-the-shelf hardware and are

applied to both the Trojan-free and Trojan-inserted designs. Attempts are then made to detect the trojan in its

dormant form. While in in their dormant form Trojans do not perform any malicious actions, however, wait

13

to be activated, through an activation signal, this can be done through the push of a button, or through a

specific set of instructions. It is however important to be able to detect trojans in their dormant form, before

they activate and perform malicious actions.

Fig: 2.2 Simplified architecture of an FPGA showing the trigger points that a Trojan may use.

Fig: 2.3 Simplified schematic of digital clock manager (DCM) in Xilinx’s Virtex-5 FPGA device

14

Fig: 2.4Diagram showing examples of payloads that can be altered by an implanted Trojan circuit.

 2.5.2 Payload Characteristics

Hardware Trojans can also be classified based on their intended behaviour. Trojans can be inserted

for causing malfunction or for leaking sensitive information. In the former case, Trojans alter the

functionality of the design in some way, while Trojans designed for leaking sensitive information may do so

without modifying the logic functionality of the design.

Trojans for Malfunction can be further classified into two subcategories based on whether they cause

logical malfunction or physical malfunction. Trojans presented in the previous sections cause logic

malfunction by modifying the values in the LUTs, causing undesired routing between two logic modules,

etc. Fig.2.4 shows additional examples of payloads affected by Trojans.

Trojans intended to cause physical damage can create electrical conflicts at the I/O ports or at the

programmable interconnects. Consider the programmable I/O block in Fig. 2.5. When an I/O port is

configured to be an input by a design, the configuration cells in the I/O block should disable the output block

to prevent internal conflicts. A counter-based Trojan can be inserted in the foundry which detects the state of

the I/O port and begins counting. When the counter counts to the final value, the Trojan may enable the

output logic when the port is configured as an input. This would cause a high short-circuit current to flow

between the FPGA and the external device, possibly damaging the system. These Trojans are similar to the

MELT viruses described in except that Trojans causing physical destruction may also be inserted in the

foundry.

Since IP designs involve a high development cost and contain sensitive information, security is of

utmost importance many high-end FPGAs such as Xilinx’s Virtex4 and Virtex5, and Altera’s StratixII and

StratixIII offer bit-stream encryption to prevent unauthorized cloning of the bit-stream. Fig.2.6 shows the

15

security features in a generic FPGA device that contains the programmable logic array configuration logic

which controls the programming of the SRAM cells in the logic array, interconnect network, and additional

modules in the device. The device also contains a decryption module for decrypting the bit-stream using a

key stored in a non-volatile memory. Security measures in the device

(1) Prevent the key from being read and sent to a port by clearing the configuration data and keys when a

read attempt is made,

(2) Prevent read-back of the configuration data, and

(3) Restrict decryption access after configuration.

However, all of these measures only prevent malicious code in an IP from accessing the key or

configuration data. Hardware Trojans can leak the IP in two ways: by leaking the decryption key, or by

leaking the design itself. An attacker in the foundry can insert an extraneous circuit (Fig. 2.6) to tap the wires

connecting the non-volatile memory and decryption module. Even if the decryption module is implemented

in the logic array by using a decryption bit-stream as mentioned in , such an instantiated module must have

access to the non-volatile key for decryption. A copy of the key can be stored in the Trojan, which may then

leak it through side-channels or covert-channels. Using side-channels, a Trojan can hide the key in the power

traces or by emitting electromagnetic radiation containing the information and an attacker can observe these

signals to steal the key. For example, the MOLES Trojan presented in uses a spread-spectrum technique to

leak the key in the power traces over several clock cycles. Alternatively, a Trojan may also multiplex the

JTAG port, USB port, or any other programming port to leak the key through covert channels when the ports

are not being used. Since SRAM-based FPGAs are volatile, an external device must be used to store the

encrypted design. If an adversary is in possession of the FPGA device loaded with the design, the encrypted

bit-stream can be stolen by dropping the connection between an FPGA’s programming ports and the external

device storing the encrypted bit-stream. In other cases, a Trojan may fake a request to the external device to

send the programming data to the FPGA. This time, however, the Trojan MUXes the bit-stream and rather

than sending it to the decryption, it may store blocks of the bit-stream at any given time and leak them

through side-channels or covert-channels.

 2.5.3 Trojans in CLB/EMB FPGA

Configurable logic blocks (CLBs) and embedded memory blocks are highly flexible, but require

significant configuration to implement the desired functions. This severely harms the memory or logic

integration density in FPGA which makes it more amenable for Trojan insertion. Fig.2.7 shows a FPGA

CLB, which can act as a 2-input look up table, a 4-bit Random Access Memory (RAM), or a 4-bit shift

register. In Fig2.7a the inserted Trojan has been shown in red: the trigger condition is derived from the

memory content of two consecutive RAM locations, and can harm the shift register functionality or the write

16

enable functionality of the memory block at run-time. The trigger condition can also be generated from the

output of other CLBs, or alternatively can be derived from the output of other functional units. Fig.2.7b

shows a Trojan instance inserted inside an embedded memory block in a commercial FPGA device. Similar

to a CLB, an EMB is also capable of executing functionalities like shift register, FIFO etc. in addition to

acting as Random Access Memory. The control circuitry shown in Fig2.7b decides between normal read

operation and shift register operation inside the EMBs. The inserted logic or Trojan conditionally affects the

shift operation inside a EMB by using adjacent memory contents and so can be triggered at run-time. It can

be noted that the similar trigger conditions can also be effectively used to leak the contents of the memory to

the output port. Such malfunctions can be achieved by changing the address bits of the memory blocks in

different clock cycles and reading out the immediate next location of the memory in each and every cycle so

as to obtain the complete memory contents stored in a particular EMB or a set of EMBs.

Fig 2.5 Programmable I/O block containing hardware Trojans to cause logical and electrical malfunction.

Fig 2.6 FPGA device with security features for bit-stream decryption.

17

Fig: 2.7 Hardware Trojan inside: (a) a configurable logic block (CLB) and (b) an embedded memory block

(EMB) of FPGA.

 2.5.4 Types of Hardware Trojans:

There are different types of hardware Trojans like Combinational, Sequential and Hybrid Trojans as

shown in fig2.8

Fig2.8: Types of Hardware Trojans

 2.5.5 Example Attack

The example attack is on a CHIP & PIN. The attack is CICA 2000 and it was performed in the

United Kingdom. It’s actually a protocol attack, but in order to perform it, you need customized hardware.

The basic hardware used is the bank card. The bank card might have been stolen and the attacker didn’t

18

know the pin to the card, but wants to buys something with the card without the pin. This attack can’t be

performed on an ATM because it uses a different protocol, it can only be performed on a handout terminals

at a store.

Fig2.9 Simplified diagram of Protocol used

Fig2.10:The Attack

Issues of this attack

1. The Pin (Invalid not signed)

2. Details used in the protocol is not enough

3. Card Detail : Terminal can’t parse only bank.

 2.6 Real Life Implementation

The attacker would need the stolen card, a card reader, a laptop, a circuit (FPGA), wire and a fake

card.

19

Fig2.11: Real life implementation of Chin & Pin attack

In the diagram above, the attacker would stick the card in a card reader and the card reader is placed

in a computer, the computer is connected to a circuit like an FPGA. The attacker then have a wire that runs

to a fake bank card that is in the terminal. The wire is attached to the circuit which was attached to the

computer that the card reader which contains the real card is inserted. This is the Man-in-the-middle device,

the stolen card would transfer all the information on the card to the fake card in the terminal. To perform this

attack in real life, all the equipment would be placed in a bag pack and the wire would be passed inside the

cloth and since by law the cashier is not supposed to touch the card, the fake card is inserted with the wire on

the circuit and the attack is performed. This attacked happened in the UK but this kind of attack cannot

happen in Canada.

20

 3.1 What is FPGA?

 CHAPTER 3

INTRODUCTION TO FPGA

A field-programmable gate array (FPGA) is designed to be configured by a customer or a designer

after manufacturing – hence the term "field-programmable". The FPGA configuration is generally specified

using a hardware description language (HDL), similar to that used for an application-specific integrated

circuit (ASIC). Circuit diagrams were previously used to specify the configuration, but this is increasingly

rare due to the advent of electronic design automation tools.

FPGAs contain an array of programmable logic blocks, and a hierarchy of reconfigurable

interconnects that allow the blocks to be "wired together", like many logic gates that can be inter-wired in

different configurations. Logic block-scan be configured to perform complex combinational functions, or

merely simple logic gates like AND and XOR. In most FPGAs, logic blocks also include memory elements,

which may be simple flip-flops or more complete blocks of memory. Many FPGAs can be reprogrammed to

implement different logic functions allowing flexible reconfigurable computing as performed in computer

software.

 3.2 THEORY

Altera was founded in 1983 and delivered the industry's first reprogrammable logic device in 1984 –

the EP300 – which featured a quartz window in the package that allowed users to shine an ultra-violet lamp

on the die to erase the EPROM cells that held the device configuration. In December 2015, Intel acquired

Altera.

Xilinx co-founders Ross Freeman and Bernard Vonderschmitt invented the first commercially viable

field-programmable gate array in 1985 – the XC2064. The XC2064 had programmable gates and

programmable interconnects between gates, the beginnings of a new technology and market. The XC2064

had 64 configurable logic blocks (CLBs), with two three-input lookup tables (LUTs). More than 20 years

later, Freeman was entered into the National Inventors Hall of Fame for his invention.

Notes:

1. Each 7 series FPGA slice contains four LUTs and eight flip-flops; only some slices can use their LUTs

as distributed RAM or SRLs.

2. Each DSP slice contains a pre-adder, a 25 x 18 multiplier, an adder, and an accumulator.

21

3. Block RAMs are fundamentally 36 Kb in size; each block can also be used as two independent 18 Kb

blocks.

4. Each CMT contains one MMCM and one PLL.

5. Artix-7 FPGA Interface Blocks for PCI Express support up to x4 Gen 2.

6. Does not include configuration Bank 0.

7. This number does not include GTP transceivers.

Fig3.1 Xilinx Artix 7 FPGA Trainer kit

Fig3.2 Port numbers of Artix7 FPGA Trainer kit

22

Table 3.1: Artix-7 FPGA Feature Summary by Device

 Configurable Logic

Slices(1)

Max

Distributed

18

36

Max

XC7A12 12,80 2,000 171 40 40 20 720 3 1 2 1 3 150

XC7A15 16,64 2,600 200 45 50 25 900 5 1 4 1 5 250

XC7A25 23,36 3,650 313 80 90 45 1,620 3 1 4 1 3 150

XC7A35 33,28 5,200 400 90 100 50 1,800 5 1 4 1 5 250

XC7A50 52,16 8,150 600 12 150 75 2,700 5 1 4 1 5 250

XC7A75 75,52 11,800 892 18 210 105 3,780 6 1 8 1 6 300

XC7A10 101,4 15,850 1,188 24 270 135 4,860 6 1 8 1 6 300

XC7A20 215,3 33,650 2,888 74 730 365 13,14 10 1 16 1 10 500

Table3. 2: Artix-7 FPGA Device-Package Combinations and Maximum I/Os

Packa CPG23 CPG23 CSG32 CSG32 FTG25 SBG48 FGG4 FBG48 FGG6 FBG67 FFG11

Size 10 x 10 10 x 10 15 x 15 15 x 15 17 x 17 19 x 19 23 x 23 23 x 23 27 x 27 27 x 27 35 x 35

Ball

 I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O

HR HR HR HR HR HR HR HR HR HR HR

XC7A

12T

 2 112 2 150

XC7A 2 106 0 210 4 150 0 170 4 250

XC7A 2 112 4 150

XC7A 2 106 0 210 4 150 0 170 4 250

XC7A 2 106 0 210 4 150 0 170 4 250

XC7A 0 210 0 170 4 285 8 300

XC7A 0 210 0 170 4 285 8 300

XC7A 4 285 4 285 8 400 16 500

1. All packages listed are Pb-free (SBG, FBG, FFG with exemption 15). Some packages are available in

Pb option.

2. Devices in FGG484 and FBG484 are footprint compatible.

3. Devices in FGG676 and FBG676 are footprint compatible.

4. GTP transceivers in CP, CS, FT, and FG packages support data rates up to 6.25 Gb/s.

23

5. HR = High-range I/O with support for I/O voltage from 1.2V to 3.3V.

1. Power Supplies:

The Nexys 4 board can receive power from the Digilent USB-JTAG port (J6) or from an external

power supply. Jumper JP3 (near the power jack) determines which source is used. All Nexys 4 power

supplies can be turned on and off by a single logic-level power switch (SW16). A power-good LED

(LD22), driven by the “power good” output of the ADP2118 supply, indicates that the supplies are turned

on and operating normally.

2. FPGA Configuration:

After power-on, the Artix-7 FPGA must be configured (or programmed) before it can perform any

functions. You can configure the FPGA in one of four ways:

1. A PC can use the Digilent USB-JTAG circuitry (portJ6, labeled “PROG”) to program the FPGA any

time the power is on.

2. A file stored in the nonvolatile serial (SPI) flash device can be transferred to the FPGA using the SPI

port.

3. A programming file can be transferred to the FPGA from a micro SD card.

4. A programming file can be transferred from a USB memory stick attached to the USB HID port.

The FPGA is made of SRAM (Volatile Memory) so the data configured inside FPGA lost at power Off

state. FPGA Configuration is the process of loading the FPGA chip with Configuration data through

external devices during power On state.

The Method of Configuring FPGA Can be divided into

• Master Mode

• Slave Mode

• JTAG Mode

24

Master Modes

In the Master Mode the Configuration data is stored in external nonvolatile memories such us SPI

FLASH, Parallel FLASH, PROM and so on. During configuration process the data is loaded in the FPGA

Configurable Logic Blocks to operate as a specific application. The configuration clock is provided by

FPGA in Master Mode operation.

Fig 3.3 FPGA Configure through External PROM

Fig 3.4FPGA Configure through SPI FLASH Memory

25

Fig 3.5 FPGA Configure through Internal FLASH

Slave Mode

In Slave Mode, The entire configuration Process is controlled by External device. Those External

device may be of processor, Microcontroller, and so on. The configuration can perform serially or parallel

method. The Clock input is supplied by the external device for Slave mode.

Fig 3.6: Slave Mode

JTAG Connection

The four-wire JTAG interface is common on board testers and debugging hardware. FPGA mainly

uses JTAG interface for prototype download and debugging. JTAG consists of TCK, TMS, TDI and TDO

lines for communication.

26

Fig 3.7: JTAG connection

3. Memory:

The Nexys 4 board contains two external memories: a 128Mbit Cellular RAM (pseudo-static

DRAM) and a 128Mbit non-volatile serial Flash device. The Cellular RAM has an SRAM interface, and

the serial Flash is on a dedicated quad-mode (x4) SPI bus. The connections and pin assignments between

the FPGA and external memories

4. Ethernet PHY:

The Nexys 4 board includes an SMSC 10/100 Ethernet PHY (SMSC part number LAN8720A)

paired with an RJ-45 Ethernet jack with integrated magnetic. The SMSC PHY uses the RMII interface and

supports 10/100 Mb/s. At power-on reset, the PHY is set to the following defaults:

• RMII mode interface

• Auto-negotiation enabled, advertising all 10/100 mode capable

• PHY address=00001

 3.3 Overview of FPGA

The Nexys4 DDR board is a complete, ready-to-use digital circuit development platform based on

the latest Artix-7™ Field Programmable Gate Array (FPGA) from Xilinx®. With its large, high-capacity

FPGA (Xilinx part number XC7A100T-1CSG324C), generous external memories, and collection of USB,

Ethernet, and other ports, the Nexys4 DDR can host designs ranging from introductory combinational

27

circuits to powerful embedded processors. Several built-in peripherals, including an accelerometer,

temperature sensor, MEMs digital microphone, a speaker amplifier, and several I/O devices allow the

Nexys4 DDR to be used for a wide range of designs without needing any other components.

The Artix-7 FPGA is optimized for high performance logic, and offers more capacity, higher performance,

and more resources than earlier designs. Artix-7 100T features include:

• 15,850 logic slices, each with four 6-input LUTs and 8 flip-flops

• 4,860 Kbits of fast block RAM

• Six clock management tiles, each with phase-locked loop (PLL)

• 240 DSP slices

• Internal clock speeds exceeding 450 MHz On-chip analog-to-digital converter (XADC)

The Nexys4 DDR also offers an improved collection of ports and peripherals, including:

• 16 user switches

• 16 user LEDs

• Two 4-digit 7-segment displays

• USB-UART Bridge

• Two tri-color LEDs

• Micro SD card connector

• 12-bit VGA output

• PWM audio output

• PDM microphone

• 3-axis accelerometer

• Temperature sensor

• 10/100 Ethernet PHY

• 128MiB DDR2

• Serial Flash

• Four Pmod ports

• Pmod for XADC signals

• Digilent USB-JTAG port for FPGA programming and communication

• USB HID Host for mice, keyboards and memory sticks

The Nexys4 DDR is compatible with Xilinx’s new high-performance Vivado® Design Suite as well as the

ISE® toolset, which includes ChipScope™ and EDK. Xilinx offers free WebPACK™ versions of these

toolsets, so designs can be implemented at no additional cost. The Nexys4 DDR is not supported by the

Digilent Adept Utility.

28

• Logic blocks

– to implement combinational

and sequential logic

• Interconnect

– wires to connect inputs and

outputs to logic blocks

• I/O blocks

– special logic blocks at periphery

of device for external connections

• Key questions:

– How to make logic blocks programmable?

– How to connect the wires?

– After the chip has been fabricated?

I/O Ports

Interconnects

Logic Blocks

Fig3.8 Block diagram of FPGA

 3.4 Programmability of FPGAs:

• User programmability of CPLDs and FPGAs is achieved via user-programmable switch

technologies.

• For CPLDs, floating-gate transistors are used like EPROM or EEPROM. On the other hand, FPGAs

normally use SRAM (static RAM) or anti fuse technology.

• Properties of the switches, such as, size, on-resistance, and capacitance dictate trade-offs in

architecture.

• In SRAM based FPGAs, there is an SRAM bit corresponding to each of the programmable points

within the device.

29

• When the device is powered-on or reset, it reads a configuration program from an off-chip memory

and loads it into on-chip SRAM.

• The configuration program defines the logic function realized by individual logic blocks and

interconnections.

• Devices using SRAM based switching can be reprogrammed easily by just changing the

configuration program.

• FPGAs belonging to Xilinx, Plassey, Algotronix, Concurrent Logic, Toshiba, etc. are SRAM based.

• SRAM provides fast re-programmability at the cost of large area (at least five transistors for cell and

one for switch).

Comparison between programming techniques

Name Whether

reprogrammable

Whether volatile Technology

Fuse No No Bi-polar

EPROM Yes, out of circuit No UVCMOS

EEPROM Yes, in circuit No EECMOS

SRAM Yes, in circuit Yes CMOS

Anti FUSE No No CMOS+

Table3.3 Comparison between programming techniques

 3.5 FPGA Logic Blocks

• There are wide variations in the logic block structure of FPGAs available from different vendors.

• They vary in number of inputs and outputs, amount of area consumed, complexity of logic functions

that they can realize, total number of transistors needed, and so on.

• The logic blocks can broadly be classified into the following two categories – Fine Grain, Coarse

Grain

Fine Grain Logic Block

• The block contains a few transistors that can be interconnected via programming.

• Cross point FPGA uses a single transistor pair for each Boolean variable in the logic block.

30

Fig3.9 Schematic diagram of FPGA Logic blocks

Coarse Grain Block – XC4000 from Xilinx

Fig3.10 Schematic diagram of coarse grain block

31

FPGA Design Flow

Fig3.11 Schematic diagram of FPGA Design flow

 3.6 Modern FPGA’s

• In addition to the basic blocks (such as, logic blocks, I/O blocks and interconnects), modern FPGAs

have additional units that make the design process simpler and more efficient.

• The two major system components, difficult to implement in FPGAs are embedded memories and

blocks for arithmetic calculations.

• Amongst the various calculations, multiplication is the most widely used one. Most of the modern

FPGAs contain embedded logic blocks for multiplication and memories to hold data. DSP

functionalities are highly facilitated by the availability of these.

• In many applications, FPGAs need to communicate with microprocessors. This has motivated many

FPGA vendors to embed soft processor cores within FPGAs. This reduces the latency of

communication between the microprocessor and the FPGA.

32

 4.1 What is HDL

CHAPTER4

Verilog Hardware Description Language

Hardware description language (HDL) is a specialized computer language used to program electronic

and digital logic circuits. The structure, operation and design of the circuits are programmable using HDL.

HDL includes a textual description consisting of operators, expressions, statements, inputs and outputs.

Instead of generating a computer executable file, the HDL compilers provide a gate map. The gate map

obtained is then downloaded to the programming device to check the operations of the desired circuit. The

language helps to describe any digital circuit in the form of structural, behavioural and gate level and it is

found to be an excellent programming language for FPGAs and CPLDs. The three common HDLs are

Verilog, VHDL, and SystemC.

 4.2 Importance of HDLs

HDLs have many advantages compared to traditional schematic-based design.

• Designs can be described at a very abstract level by use of HDLs. Designers can write their RTL

description without choosing a specific fabrication technology. Logic synthesis tools can automatically

convert the design to any fabrication technology. If a new technology emerges, designers do not need to

redesign their circuit. They simply input the RTL description to the logic synthesis tool and create a new

gate-level net-list, using the new fabrication technology. The logic synthesis tool will optimize the circuit in

area and timing for the new technology.

• By describing designs in HDLs, functional verification of the design can be done early in the design cycle.

Since designers work at the RTL level, they can optimize and modify the RTL description until it meets the

desired functionality. Most design bugs are eliminated at this point. This cuts down design cycle time

significantly because the probability of hitting a functional bug at a later time in the gate-level netlist or

physical layout is minimized.

• Designing with HDLs is analogous to computer programming. A textual description with comments is an

easier way to develop and debug circuits. This also provides a concise representation of the design,

compared to gate-level schematics. Gate-level schematics are almost incomprehensible for very complex

designs.

 4.3 Introduction to Verilog HDL

Verilog HDL is one of the two most common Hardware Description Languages (HDL) used by

integrated circuit (IC) designers. The other one is VHDL. HDL’s allows the design to be simulated earlier in

the design cycle in order to correct errors or experiment with different architectures. Designs described in

HDL are technology-independent, easy to design and debug, and are usually more readable than schematics,

particularly for large circuits.

Verilog can be used to describe designs at four levels of abstraction:

(i) Algorithmic level (much like c code with if, case and loop statements).

(ii) Register transfer level (RTL uses registers connected by Boolean equations).

(iii) Gate level (interconnected AND, NOR etc.).

33

(iv) Switch level (the switches are MOS transistors inside gates).

The language also defines constructs that can be used to control the input and output of simulation.

Verilog has a variety of constructs as part of it. All are aimed at providing a functionally tested and a

verified design description for the target FPGA or ASIC. The language has a dual function – one fulfilling

the need for a design description and the other fulfilling the need for verifying the design for functionality

and timing constraints like propagation delay, critical path delay, slack, setup, and hold times.

Verilog as an HDL has been introduced here and its overall structure explained. A widely used

development tool for simulation and synthesis has been introduced; the brief procedural explanation

provided suffices to try out the Examples and Exercises in the text.

 4.4 Module

Any Verilog program begins with a keyword– called a “module.” A module is the name given to any

system considering it as a black box with input and output terminals as shown in Figure 4.1. The terminals

of the module are referred to as ‘ports’. The ports attached to a module can be of three types:

• input ports through which one gets entry into the module; they signify the input signal terminals of

the module.

• output ports through which one exits the module; these signify the output signal terminals of the

module.

• inout ports: These represent ports through which one gets entry into the module or exits the

module; These are terminals through which signals are input to the module sometimes; at some other

times signals are output from the module through these.

Fig 4.1: Representation of a module as black box with its ports.

 4.5 Tokens of Verilog

The basic lexical conventions used by Verilog HDL are similar to those in the C programming

language. Verilog contains a stream of tokens. Tokens can be comments, delimiters, numbers, strings,

identifiers, and keywords.

34

 4.5.1 Case Sensitivity

Verilog is a case-sensitive language like C. Thus sense, Sense, SENSE, sENse,… etc., are all treated

as different entities / quantities in Verilog.

 4.5.2 Keywords

The keywords define the language constructs. A keyword signifies an activity to be carried out,

initiated, or terminated. As such, a programmer cannot use a keyword for any purpose other than that it is

intended for. All keywords in Verilog are in small letters and require to be used as such (since Verilog is a

case-sensitive language). All keywords appear in the text in New Courier Bold-type letters.

Examples

module <- signifies the beginning of a module definition.

endmodule <- signifies the end of a module definition.

 begin<- signifies the beginning of a block of statements. end<- signifies the end of a block of statements.

if <- signifies a conditional activity to be checked

 while<- signifies a conditional activity to be carried out.

 4.5.3 Operators

Operators are of three types: unary, binary, and ternary. Unary operators precede the operand. Binary

operators appear between two operands. Ternary operators have two separate operators that separate three

operands.

Examples

 a = ~ b; // ~ is a unary operator. b is the operand

a = b && c; // && is a binary operator. b and c are operands

a = b ? c : d; // ?: is a ternary operator. b, c and d are operands

 4.5.4 Data Types

There are two groups of types, "net data types" and "variable data types."

An identifier of "net data type" means that it must be driven. The value changes when the driver changes

value. These identifiers basically represent wires and are used to connect components.

"net data types" are: wire, supply0, supply1, tri, triand, trior,tri0, tri1, wand, wor "net data types" can

have strength modifiers: supply0, supply1,strong0, strong1, pull0, pull1, weak0, weak1,highz0, highz1,

small, medium, large.

Some "net data types" can take modifiers: signed, vectored, scalar.

An identifier of "variable data type" means that it changes value upon assignment and holds its value until

another assignment. This is a traditional programming language variable and is used in sequential

statements.

35

"Variable data types" are: integer, real, realtime, reg, time.

integer is typically a 32 bit twos complement integer.

real is typically a 64 bit IEEE floating point number.

real time is of type real used for storing time as a floating point value.

reg is by default a one bit unsigned value.

The reg variable data type may have a modifier signed, and may have may bits by using the vector modifier

msb:lsb].

Scalars and Vectors

Entities representing single bits — whether the bit is stored, changed, or transferred — are called

“scalars.” Often multiple lines carry signals in a cluster – like data bus, address bus, and so on. Similarly, a

group of regs stores a value, which may be assigned, changed, and handled together. The collection here is

treated as a “vector.” Figure 4.2 illustrates the difference between a scalar and a vector. wr and rd are two

scalar nets connecting two circuit blocks circuit1 and circuit2. b is a 4-bit-wide vector net connecting the

same two blocks. [b0], [b1], [b2], and [b3] are the individual bits of vector b. They are “part vectors.”

A vector reg or net is declared at the outset in a Verilog program and hence treated as such. The

range of a vector is specified by a set of 2 digits (or expressions evaluating to a digit) with a colon in

between the two. The combination is enclosed [within square brackets.

Fig 4.2: Illustration of Scalars and Vectors

Examples:

wire [3:0] a; /* a is a four bit vector of net type; the bits are designated as [a3], [a2], [a1] and [a0]. */

reg [2:0] b; /* b is a three bit vector of reg type; the bits are designated as [b2], [b1] and [b0]. */

reg [4:2] c; /* c is a three bit vector of reg type; the bits are designated as [c4], [c3] and [c2]. */

36

wire [-2:2] d ; /* d is a 5 bit vector with individual bits designated as [d-2], [d-1], [d0], [d1] and [d2].

*/

Whenever a range is not specified for a net or a reg, the same is treated as a scalar – a single bit quantity. In

the range specification of a vector the most significant bit and the least significant bit can be assigned

specific integer values. These can also be expressions evaluating to integer constants – positive or negative.

Normally vectors – nets or regs – are treated as unsigned quantities. They have to be specifically declared as

“signed” if so desired.

Examples

wire signed [4:0] num; // num is a vector in the range -16 to +15.

reg signed [3:0] num_1; // num_1 is a vector in the range -8 to +7.

 4.5.5 Comments

Comments can be inserted in the code for readability and documentation. There are two ways to

write comments. A one-line comment starts with "//". Verilog skips from that point to the end of line. A

multiple-line comment starts with "/*" and ends with "*/". Multiple-line comments cannot be nested.

However, one-line comments can be embedded in multiple-line comments.

a = b && c; // This is a one-line comment

/* This is a multiple line comment */

/* This is /* an illegal */ comment */

/* This is //a legal comment */

 4.5.6 Number Specification

There are two types of number specification in Verilog they are sized and unsized.

Sized numbers

Sized numbers are represented as <size> '<base format> <number>.

<size> is written only in decimal and specifies the number of bits in the number. Legal base formats are

decimal ('d or 'D), hexadecimal ('h or 'H), binary ('b or 'B) and octal ('o or 'O). The number is specified as

consecutive digits from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f. Only a subset of these digits is legal for a

particular base. Uppercase letters are legal for number specification.

4'b1111 // This is a 4-bit binary number

12'habc // This is a 12-bit hexadecimal number

16'd255 // This is a 16-bit decimal number.

Un-sized numbers

37

Numbers that are specified without a <base format> specification are decimal numbers by default.

Numbers that are written without a <size> specification have a default number of bits that is simulator- and

machine-specific (must be at least 32).

23456 // This is a 32-bit decimal number by default

'hc3 // This is a 32-bit hexadecimal number

'o21 // This is a 32-bit octal number

X or Z values

Verilog has two symbols for unknown and high impedance values. These values are very important

for modeling real circuits. An unknown value is denoted by an x. A high impedance value is denoted by z.

12'h13x // This is a 12-bit hex number; 4 least significant bits unknown

6'hx // This is a 6-bit hex number

32'bz // This is a 32-bit high impedance number

An X or Z sets four bits for a number in the hexadecimal base, three bits for a number in the octal

base, and one bit for a number in the binary base. If the most significant bit of a number is 0, X, or Z, the

number is automatically extended to fill the most significant bits, respectively, with 0, X, or Z. This makes it

easy to assign X or Z to whole vector. If the most significant digit is 1, then it is also zero extended.

Negative numbers

Negative numbers can be specified by putting a minus sign before the size for a constant number.

Size constants are always positive. It is illegal to have a minus sign between <base format> and <number>.

An optional signed specifier can be added for signed arithmetic.

-6'd3 // 8-bit negative number stored as 2's complement of 3

-6'sd3 // Used for performing signed integer math

4'd-2 // Illegal specification

 4.6 Module Declaration:

Modules are the building blocks of Verilog designs. A module can be an element or a collection of

lower-level design blocks. A module provides the necessary functionality to the higher-level block through

its port interface (inputs and outputs), but hides the internal implementation. Module interface refers, how

module communicates with external world. This communication is possible through different ports such as

input, output and bi-directional (inout) ports. Design functionality is implemented inside module, after port

declaration. In Verilog, a module is declared by the keyword module. A corresponding keyword endmodule

must appear at the end of the module definition. Each module must have a module_name, which is the

identifier for the module, and a port list, which describes the input and output terminals of the module.

Design functionality is implemented inside module, after port declaration. The design functionality

implementation part is represented as “body” here.

38

Syntax

module module_name(port_list);

inputmsb:lsb] input_port_list;

outputmsb:lsb] output_port_list;

inoutmsb:lsb] inout_port_list;

………statements……

endmodule

NOTE: All module declarations must begin with the module (or macro-module) keyword and end with

the endmodule keyword. After the module declaration, an identifier is required. A ports list is an option.

After that, ports declaration is given with declarations of the direction of ports and the optionally type. The

body of module can be any of the following:

• Any declaration including parameter, function, task, event or any variable declaration.

• Continuous assignment.

• Gate, UDP or module instantiation.

• Specify block.

• Initial block

• Always block.

If there is no instantiation inside the module, it will be treated as a top-level module.

Example

module module_1(a, b, c) ;

parameter size = 3 ;

input size : 0] a, b ;

output size : 0] c;

assign c = a & b;

endmodule

4.6.1 Module Instantiation

Modules can be instantiated from within other modules. When a module is instantiated, connections

to the ports of the module must be specified. There are two ways to make port connections. One is

connection by name, in which variables connected to each of module inputs or outputs are specified in a set

of parenthesis following the name of the ports. In this method order of connections is not significant (from

Example 1).

39

The second method is called ordered connection. In this method the order of the ports must match the

order appearing in the instantiated module (from Example 2).

When ports are connected by name it is illegal to leave any ports unconnected. This may occur when

ports are connected by order (from Example 3).

What happens if you leave a port unconnected depends on the type of the port. If you are connecting

net type ports, unconnected bits are driven with high impedance. In other cases, bits are driven with

unknown values.

Module instantiations can create an array of instances. To create theses instances, range

specifications have to be declared after the module name. The array of instances can save you time in writing

code and provide a way to enrich your readability (from Example 4).

Example 1

module dff (clk, d, q);

input clk, d;

output q;

reg q;
always @(posedge clk) q = d;

endmodule

module top;

reg data, clock;

wire q_out, net_1;

dff inst_1 (.d(data), .q(net_1), .clk(clock));

dff inst_2 (.clk(clock), .d(net_1), .q(q_out));

endmodule

In the top module there are two instantiations of the 'dff' module. In both cases port connections are

done by name, so the port order is insignificant. The first port is input port 'd', the second is output 'q' and the

last is the clock in the 'inst_1'. In the dff module the order of ports is different than either of the two

instantiations.

Example 2

module dff (clk, d, q);

input clk, d;

output q;

reg q;

always @(posedge clk) q = d;

endmodule

module top;

reg data, clock;

wire q_out, net_1;

dff inst_1 (clock, data, net_1);

dff inst_2 (clock, net_1, q_out);

endmodule

Example 3

40

dff inst_1 (clock, , net_1);

Second port is unconnected and has the value Z because it is of the net type.

Example 4

module my_module (a, b, c);

input a, b;

output c;

assign c = a & b ;

endmodule

module top (a, b, c) ;

input 3:0] a, b;

output 3:0] c;

my_module inst 3:0] (a, b, c);

endmodule

4.7 Flowchart of Verilog Code

Fig 4.3: Flowchart representation of Verilog Code

41

Verilog has four levels of Modeling:

1) The switch level Modeling.

2) Gate-level Modeling.

3) The Data-Flow level.

4) The Behavioural Procedure

1) Switch level Modeling:

A circuit is defined by explicitly showing how to construct it using transistors like pmos and

nmos, pre-defined modules.

Example:

module inverter (out, in);

output out;

input in;

supply0gnd;

supply1 vdd;

nmosx1 (out, in, gnd);

pmosx2(out, in, vdd);

endmodule

2) Gate level modeling:

A circuit is defined by explicitly showing how to correct it using logic gates, predefined

modules, and the connections between them. In this first we think of our circuit as a box or

module which is encapsulated from its outer environment, in such a way that its only

communication with the outer environment is through input and output ports. We then set out to

describe the structure within the module by explicitly describing its gates and sub modules, and

how they connect with one another as well as to the module ports. In other words, structural

modeling is used to draw a schematic diagram for the circuit. As an example, consider the full-

adder below.

Example:

module fulladder (a, b, sum, C out);

42

Input a, b;

output sum, C out;

xor x1(a, b, y);

xor x2(a, b, y);

endmodule

3) Data-flow modeling:

Dataflow modelling uses Boolean expressions and operators. In this we use assign statement.

Example :

module fulladder (a, b, sum, C out);

input a, b;

output sum, C out;

assign sum=a^b;

assign Cout =a^b;

endmodule

4) Behavioural modeling:

It is higher level of modeling where behaviour of logic is modelled. Verilog behavioural

code is inside procedure blocks, but there is an exception: some behavioural code also exist

outside procedure blocks.

There are two types of procedural blocks in Verilog :

Initial: initial blocks execute only once at time zero(start execution at time zero)

Always: always blocks loop to execute over and over again; in other words, as the name

suggests, it executes always.

An always statement executes repeatedly, it starts and its execution at 0ns

Syntax:

always@ sensitivitylist)

43

begin

--Procedural statements--

end

Example:

module fulladder (a, b, clk, sum);

input a, b, clk;

output sum;

always@ (posedgeclk)

begin

sum =a+b;

endmodule

4.8 Software Tools

Used Xilinx Vivado

2019.2

Few important terminologies are tasks and functions. They are described below.

Tasks:

 Tasks are used in all programming languages, generally known as procedures or subroutines. The lines

of code are enclosed in task . end task brackets. Data is passed to the task, the processing done, and the result
returned. They have to be specifically called, with data ins and outs, rather than just wired in to the general

netlist. Included in the main body of code, they can be called many times, reducing code repetition.

• tasks are defined in the module in which they are used. It is possible to define a task in a separate file

and use the compile directive 'include to include the task in the file which instantiates the task.

• tasks can include timing delays, like posedge, negedge, # delay and wait.

• tasks can have any number of inputs and outputs.

• The variables declared within the task are local to that task. The order of declaration within the task

defines how the variables passed to the task by the caller are used.

• tasks can take, drive and source global variables, when no local variables are used. When local

variables are used, basically output is assigned only at the end of task execution.

• tasks can call another task or function & can be used for modeling both combinational, sequential logic.

• A task must be specifically called with a statement; it cannot be used within an expression as a

function can.

44

Functions:

A Verilog HDL function is the same as a task, with very little differences, like function cannot drive more

than one output, can not contain delays.

• functions are defined in the module in which they are used. It is possible to define functions in

separate files and use compile directive 'include to include the function in the file which instantiates

the task.

• functions can not include timing delays, like posedge, negedge, # delay, which means that functions

should be executed in "zero" time delay.

• functions can have any number of inputs but only one output.

• The variables declared within the function are local to that function. The order of declaration within

the function defines how the variables passed to the function by the caller are used.

• functions can take, drive, and source global variables, when no local variables are used. When local

variables are used, basically output is assigned only at the end of function execution.

• functions can be used for modeling combinational logic.

• functions can call other functions, but cannot call tasks.

Steps to be followed to Create a Project in Xilinx Vivado 2019.2

• First open Xilinx Vivado 2019.2 then the Fig 4.4 appears on the screen.

• Click on Create Project to create a new project.

Fig 4.4 Opening window of Xilinx 2019.2

45

• Now a new window appears as shown in Fig 4.5

Fig:4.5: Create project window

• Click on NEXT to move further fig 4.6 shows the name and location of the project.

Fig 4.6: Name and Location entry for project

• Select Type of the project fig 4.7 shows type of project.

46

Fig 4.7 Selecting type of the project

• Now select specifications for the required project. Fig 4.8 shows Specifications of the project.

Fig 4.8.: Specifications window for the project

• Fig 4.9 shows summary of the project.

47

Fig 4.9: Summary window of the project

• Sources can be added upon clicking Add Sources. Fig 4.10 appears after following the above steps.

Fig 4.10: Add sources

• Sources are added to the project by clicking on add or create design and a Verilog file name.

48

Fig4.11: Creating source

• Create Verilog files to write code. Fig 4.8.9 and 4.8.10 deals with creating a Verilog file for writing

the code.

Fig 4.12: Creating file window

49

Fig 4.13: Filename creation window

• Sources will be shown in a new window as in fig 4.8.11

Fig 4.14: Sources window

• Simulation, Synthesis and implementation can be done by using the side bar options as shown in fig

4.8.12

50

Fig 4.15 Sidebar for performing required process.

51

5.1 Hardware Trojan

 CHAPTER 5

HARDWARE TROJAN INSERTION AND

DETECTION

A hardware Trojan can be described as a malicious alteration or inclusion to an integrated circuit (IC)

that will either alter its intended function or cause it to perform an additional malicious function. These

malicious inclusions or alterations are generally programmed to activate only under a specific set of

circumstances created by an attacker and are extremely hard to detect when in their dormant state. As

technology advances, so does the demand for IC boards leaving many technology companies without the

resources to produce secure enough ICs to meet current demands. This has pushed companies into the

‘fabless’ trend prevalent in today’s semi-conductor industry, where companies are no longer attempting to

produce the goods in their own factories, but instead are outsourcing the process to cheaper factories abroad.

This growth brings with it a significant rise in the level of threat posed by hardware trojans, a threat that

directly affects all companies concerned with products that utilise ICs. This encompasses many different

industries, including the military and telecommunications companies, and can potentially affect billions of

devices from mobile phones and computers to military grade aviation and detection devices, particularly at a

time when wireless devices are being introduced as links in critical infrastructure, compounding trust and

security issues even further.

 5.2 Algorithm for Trojan Detection

The following steps are to be followed for detecting an hardware trojan.

1. Get the circuit under test

2. Retrieve the path delays and other parameters

3. i=1

4. Retrieve ith path

5. Give test vector to circuit under test

6. Measure the path delay and other parameters

7. If delay equal to golden circuit’s delay then go to ‘a’ else go to ‘b’.

a. i=i+1

if i=number of available paths then go to ‘f1’ else go to step-4.

f1. Circuit is trojan free.

b. Circuit is affected.

 5.3 Hardware Trojan Detection Methodologies

In this section, we discuss some detection methods for detecting FPGA hardware Trojans. These

methods must be used by the FPGA vendors when they receive the chips from the off-shore foundry. We

assume that the testing facility used by a FPGA vendor is secure, eliminating the possibility that and

52

adversary in the testing facility could intentionally not detect malicious alterations. Detection methods can be

classified into three categories: Visual detection techniques, logic testing, side-channel analysis and using ring

oscillators.

 5.3.1 Visual Detection Methods

This class of detection methods uses imaging to identify any malicious insertions in the chip. These

techniques include using X-ray imaging, scanning optical microscopy (SOM), scanning electron microscopy

(SEM) , and Pico-second imaging circuit analysis (PICA), among others. These methods, however, can be

expensive in cost and analysis time. Moreover, these techniques suffer from lack of resolution to decipher

logic/ transistor/interconnect level information, primarily due to the obstruction by the stack of metal layers

in modern FPGAs. With increasing device density due to technology scaling, effectiveness of the imaging

techniques is expected to reduce significantly. Partial de-layering of ICs appears more effective; however, it

may in turn render an FPGA non-functional. Due to the above limitations, imaging analysis may not be a

viable Trojan detection technique. The following shown fig is an example of differentiating active, sleep and

trojan free circuit.

 5.3.2 Logic-Based Testing

Standard logic testing of FPGAs by automatic test pattern generation (ATPG) tools is used for

detecting faults. Using input vectors, all the programmable logic blocks can be tested to function correctly

without faults. For example, a stuck-at-0 fault in the programmable logic blocks can be detected by mapping

an AND function in the blocks and applying all-1 inputs. However, since Trojan models are very different

from fault models, a better approach is required to detect Trojans. For example, an attacker can insert a

Trojan which uses many values of the LUT SRAM cells or configuration cells as trigger nodes, and such a

Trojan will not be detected using testing based on fault models. Due to the availability of a large number of

programmable blocks containing countless nodes, exhaustive testing of all combinations of nodes is

infeasible. For a k-input LUT, having L = 2k cells in the logic block, F = 2pow(2k) distinct functions are

possible. For an n-input Trojan, the inputs can be chosen in LC2 ways from the L cells. Since each

combination can in turn be one out of 2n values, the total number of functions that need to be mapped to

exhaustively test a logic block becomes F = 2pow(2k)*2n. For example, for a 2-input LUT having four cells,

a 2-input Trojan can be chosen from the four cells in 4C2=6 ways. If the chosen two cells are designated a

and b, then the trigger values for the Trojan can be ab;(abar)b;a(bbar);(abar)(bbar), requiring 24 functions to

be mapped. However, since entire functions are mapped onto the LUTs, mapping one function with values

a;b;c;d can detect several Trojans such as ab;bc;cd, etc., thus requiring fewer functions to be mapped. Still, if

the trigger nodes are distributed among logic blocks, the sheer number of logic blocks, LUTs, and

configuration cells makes it impossible for exhaustive testing to be used for Trojan detection. Due to this

restriction, we propose a statistical approach of iterative self-checking based on the MERO test approach as

shown in fig 5.1. Then, the cluster size is iteratively increased (e.g., to include two neighbouring logic

blocks) and the process is repeated. Such a statistical approach of testing can be effective since an attacker

does not know the exact test procedure to cleverly insert malicious circuits. Moreover, for larger

combinational and sequential Trojans, this approach can be useful to cause partial activation of Trojans for

detection using side-channel techniques.

53

 5.3.3 Side Channel Analysis

Logic-based testing may not be effective for activating large combinational or sequential Trojans due

to the extremely large number of possible trigger nodes. Side-channel analysis involves the measurement

and analysis of information obtained from an IC’s side-channels. The information could be based on timing,

power consumption, or electromagnetic radiation. Side-channel analysis has been proposed previously as a

powerful technique to detect malicious insertions in an IC .In this section, we specifically concentrate on

side-channel information obtained from power consumption in the device. If these Trojans simultaneously

try to configure the port as an output, then a very large current can be detected by current sensors in the

device, indicating a malicious modification. Since on-chip current sensors may also be tampered in the

foundry during production, they must be tested thoroughly to identify any tampering. An alternative and

secure strategy would be to use an on-board current sensor to detect short-circuit conditions. Trojans which

do not cause physical damage and only cause logical malfunction may be extremely difficult to detect by

analyzing static power. The advantage of this type of analysis is that, unlike logic- based testing, a Trojan

does not have to become active for detection; it merely needs to cause switching in the Trojan to consume

dynamic power. For the IP-independent Trojans presented in Section 3, transient power analysis can be an

effective detection method. For example, a counter-based Trojan inserted in the clock manager module can

be detected by applying a clock signal to the FPGA and applying constant inputs to prevent logic blocks

from switching. An extraneous counter or any sequential circuit will consume transient power as it

transitions from one state to another. This contribution to dynamic power can be identified and associated

with malicious insertions after accounting for process noise and clock coupling power.

 5.3.4 CRC(Cyclic Redundancy Check)

 CRC is generally used in data transmission to check whether the data transmitted is received

properly. It is based on the cyclic addition of redundant data which encodes the input to check for errors.

The generating polynomial used in CRC computation is selected based on the hamming distance between

the outputs and the length of the outputs.

(i) Simple Majority Voting

 The simple voting algorithm polls the binary words for the number of ones and zeroes. The output

bit is that which forms the majority and it is considered as the correct bit for that particular bit position. At

the end of the polling, an output word, the same size as the input word is obtained [4]. Though the method

is simple and fast, it favors the majority which might pose problems when the non-infected CUT/ IPs does

not constitute the obvious majority of the samples considered.

 (ii) Weighted Voting

This method assigns weights to the outputs based on a comparison between bit- streams and the circuit

whose output has the highest weight is considered the non-infected one. Here, CUT/IPs are trusted gradually

based on the output gener- ated for different input patterns. One of the major advantages of weighted voting

is that even when the majority (or all) of the circuits under test is infected, it is possible to identify the

infected circuits [4, 6]. The major drawbacks are the algorithm biased towards 1’s.

54

 (iii) Outline of Weighted Voting Algorithm

 Voting algorithm selects the higher weighed CUT/IP bit. Each CUT/IP’s initial weight counter is

zero as mentioned in [4, 6], After each cycle, voting algorithm calculates the sum of weights for each IC

cores resulting logical one and sum of weights for each CUT/IP resulting logical zero. Then it compares both

the sums. The higher sum will be considered the correct result bit and the voted output, and the lower sum is

the infected CUT/IP bit. Weight counters are increased by one for all CUT/IP which produces the same result

as clear bit and the weight counters of disagreeing result CUT/IP’s are right shifted [6]. It is done to simplify

the hardware implementation voting circuit. This technique produces supreme results, especially when using

a minimum number of smaller CUT/IPs units. The proposed Trojan detection method consists of the

following.

 (iv) Modified-Weighted Voting Algorithm

The proposed technique improves the existing methods by developing a Modified-Weighted Voting

Algorithm which overcomes the bias towards 1s and incorporating Cyclic Redundancy Check (CRC) for

comparison of bit streams. It compares the output bit streams of a sample set of CUTs (Circuit under Threat)

and identifies the infected circuit(s) based on a Modified Voting Technique and Cyclic Redundancy Check

(CRC). In order to improve the accuracy of the existing weighted voting algorithm, the following

modifications are made: equal initialization of weights and removing bias towards 1s by giving equal priority

to both 1 and 0 in the bit stream.Input Pattern Generator: It has certain predefined patterns which cover the

critical input patterns. It makes sure every net in the circuit is toggled at least once from 0 to 1 and 1 to 0.

Thus enabling us to find the infected circuit using very less number of input patterns. Evaluating the

accuracy of the algorithm by processing the outputs of around 126 varieties of benchmark circuits ISCAS’85

and ISCAS’S9 circuits with and without Trojan. To efficiently analyze the effect many variations were

attempted in terms of Trojan type and location of the Trojan. The following Trojan circuits were designed

and used

• NAND gate as Trojan

• Linear-Feedback Shift Register

• 3-bit asynchronous Counter

 Fig 5.1 Flowchart of modified-weighted voting algorithm

55

 A simple outline to understand CRC computation is shown in Fig5.4

 Fig5.2 Simple outline for CRC

 Here, we are inserting a counter based sequential Trojan using verilog hdl in FPGA, and we are

detecting the Trojan using CRC(cyclic redundancy check) algorithm.

 Counter based sequential trojan:

 A large 32-bit counter implemented in the transmitter part of transceiver module which counts the

number of transmitted data bytes.

 Once the count value reaches intended count Trojan gets activated. Trojan payload modifies or

corrupts the transmitted data frame.

 This counter based Trojan in general goes undetected during simulation because to reach large count

value takes longer simulation time. Counter is implemented in the RTL of the design in verilog.

 Explanation of CRC algorithm:

 CRC stands for cyclic redundancy check.

 In this technique, we have to transmit bit streams through our transmitter in the form of polynomials

with coefficients either 0 or 1

 It uses modulo-2 or exor addition.

 To generate the Crc code, the transmitter and receiver must agree on generator polynomial denoted as

G(x)

 Then the transmitter generates a bit sequence and this bit sequence is called as frame check sequence

FCS or CRC code.

 And this CRC code(remainder) is generated , dividing the original data by general polynomial G(x).

 After that the Crc code is transmitted to receiver along with original input bit stream. Then the receiver

divides the (original input data +CRC) by the generator polynomial G(x).If the remainder is 0,then it

does not contain any errors, otherwise there is an error.

(A) Counter based Sequential Trojan:

 A large 32-bit counter implemented in the transmitter part of transceiver module which counts

the number of transmitted data bytes. Once the count value reaches intended count Trojan get

56

activated. Trojan payload modifies or corrupts the transmitted data frame. This counter based Trojan in

general goes undetected during simulation because to reach large count value takes longer simulation

time. Counter is implemented in the RTL of the design in verilog shown in below code.

 RTL schematic of counter based sequential Trojan:

 FF

 Fig5.3 RTL schematic diagram for counter based sequential Trojan

 The floor planning for the counter based sequential Trojan circuit is shown in fig 5.6

 Floor planning of counter based sequential Trojan:

 Fig5.4 Floor planning of counter based sequential Trojan circuit

57

 The simulation results for counter based sequential Trojan effected circuit is shown in fig5.7

 Fig5.5 Simulation Results for Counter based sequential Trojan circuit

58

Utilisation/Synthesis report of Trojan insertion:

 Table 5.1 Synthesis report for Trojan Insertion

 Power report of Trojan insertion:

 Total on chip power: 11.165w

 Design power budget: Not specified

 Power budget margin: N/A

 Junction temperature: 75.9 degrees celsius

 Thermal margin : 9.1 degrees celsius

 Power supplied to off chip devices : 0W

59

 (B) TROJAN DETECTION

 There are different techniques can be implemented to detector prevent Trojans according to the level of

trust in each phase of the IC design. For an ASIC, SoC and FPGA majority of these detection techniques can be

applied with small differences. Detection techniques are applied depending on the targeted design and types of

hardware Trojans planning to be detected. Here, we have planned to detect the Trojans using CRC technique.

This work involves the detection of Hardware Trojan in a circuit using an improved voting algorithm employing

CRC. By this method Trojan can be detected and it obtains the design free from Trojan which shows in the

experimental result.

 RTL schematic for Trojan detection circuit:

 Fig5.6 RTL schematic diagram for Trojan detection circuit

 Floor planning of CRC detection:

 Fig5.7 Floor planning of CRC detection

60

 The simulation results for Trojan Detection circuit is shown in fig5.10

 Fig5.8 Simulation result for Trojan Detection circuit

 Synthesis/Utilisation report of Trojan detection:

 Table 5.2 Synthesis report for Trojan Detection

61

 Trojan detection power report:

 Total on chip power: 33.093 w

 Design power budget: Not specified

 Power budget margin: N/A

 Junction temperature: 125 degrees celsius

 Thermal margin : -91 degrees celsius

 Power supplied to off chip devices : 0W

 The components like LUTs are increased in Trojan inserted circuit. Few components like Slice Registers and

Registers as flip flops remained same. From this observation we can extract that the number of memory elements utilized

are same in both Trojan free and Trojan affected circuits.

62

 CHAPTER 6

 CONCLUSION AND FUTURE WORK

Formal methods are great tool in order to prove that the implementation of an electronic design

behaves as specified. Hence, we identify equivalence checking as adequate measure in order to reveal

manipulations of the bit-stream configuration, which is well-known state of the art. However, the big

problem is that bit-stream verification is not a popular task in today’s field-programmable gate array (FPGA)

design and verification flows. One of the major reasons for this fact is that bit-stream formats are not

publicly documented, which makes it hard for third-party verification tool vendors to offer solutions which

prove that the bit-stream configuration is formally equivalent to the original HDL description. This project

shows that it is easily possible to inject malicious behaviour into electronic designs using compromised

design tools without being noticed by neither the designer nor the state-of-the-art tools targeted at Trojan

detection. Different Trojans can be detected with different methodologies. A single methodology can’t be

used for all the Trojans detection. Finding a Trojan in a complex circuit takes time so different test vectors

along with different triggering mechanisms are to implemented on the circuit under test. We first present a

type of hardware Trojan, counter based hardware Trojan and implement a functional simulation. Finally 32

bit counter based hardware Trojan is inserted in the transmitted part of transceiver module which counts the

number of transmitted data bytes. Once the count value reaches intended count Trojan gets activated. Trojan

payload modifies or corrupts the transmitted data frame.

In the future we will aim at developing techniques to use thermal imaging for the detection of large

scale hardware Trojan infection and explore other Trojan taxonomies in more intricate designs and with

advanced malicious purposes. While we believe this CRC method could be used widely for Trojan detection

with higher detection accuracry and better capabilities. Future work will compare the technique proposed

against smaller known Trojans and the process variation and manufacturing variation will be taken into

account. Furthermore, the number of test vectors for Vivado power estimator will be increased in order to

increase its accuracy.

63

 REFERENCES

1] A. P. Fournaris, L. Pyrgas and P. Kitsos, "An FPGA Hardware Trojan Detection Approach Based on

Multiple Parameter Analysis," 2018 21st Euromicro Conference on Digital System Design (DSD), Prague,

2018, pp. 516-522.

2] He,J.;Zhao,Y.;Guo,X.;Jin,Y. HardwareTrojanDetectionThroughChip-FreeElectromagneticSide-Channel

Statistical Analysis. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2017, 25, 2939–2948.

3] Shende, R.; Ambawade, D.D. A side channel based power analysis technique for hardware trojan

detection using statistical learning approach. In Proceedings of the 2016 Thirteenth International Conference

on Wireless and Optical Communications Networks (WOCN), Hyderabad, India, 21–23 July 2016; pp. 1–4

4] S. Mal-Sarkar, R. Karam, S. Narasimhan, A. Ghosh, A. Krishna and S. Bhunia, "Design and Validation

for FPGA Trust under Hardware Trojan Attacks," in IEEE Transactions on Multi-Scale Computing Systems,

vol. 2, no. 3, pp. 186-198, 1 July-Sept. 2016.

 5] S. Moein, J. Subramnian, T. A. Gulliver, F. Gebali and M. W. El-Kharashi, "Classification of hardware

Trojan detection techniques," 2015 Tenth International Conference on Computer Engineering & Systems

(ICCES), Cairo, 2015, pp. 357-362.

6] P. Kitsos and A. G. Voyiatzis, "FPGA Trojan Detection Using Length-Optimized Ring Oscillators," 2014

17th Euromicro Conference on Digital System Design, Verona, 2014, pp. 675-678.

7] D. M. Shila and V. Venugopal, "Design, implementation and security analysis of Hardware Trojan

Threats in FPGA," 2014 IEEE International Conference on Communications (ICC), Sydney, NSW, 2014,

pp. 719-724.

8] A. Al-Anwar, Y. Alkabani, M. W. El-Kharashi and H. Bedour, "Hardware Trojan detection methodology

for FPGA," 2013 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing

(PACRIM), Victoria, BC, 2013, pp. 177-182.

9] M. Beaumont, B. Hopkins, and T. Newby. Safer path: Security architecture using fragmented execution

and replication for protection against trojaned hardware. In DATE, pages 1000–1005. IEEE, 2012.

10] A. Waksman and S. Sethumadhavan. Silencing hardware backdoors. In Proceedings of the 2011 IEEE

Symposium on Security and Privacy, SP ’11, pages 49–63. IEEE Computer Society, 2011.

11] A. Baumgarten, A. Tyagi, and J. Zambreno. Preventing IC piracy using reconfigurable logic barriers.

IEEE Des. Test, 27(1):66–75, Jan. 2010.

12] M. Banga and M. S. Hsiao. Vitamin: Voltage inversion technique to ascertain malicious insertions in

ICs. In Proceedings of the IEEE International Workshop on Hardware-Oriented Security and Trust, HST

’09, pages 104–107, 2009.

13] X. Wang, H. Salmani, M. Tehranipoor, and J. Plusquellic. Hardware trojan detection and isolation using

current integration and localized current analysis. In Proceedings of the IEEE International Symposium on

Defect and Fault Tolerance of VLSI Systems, pages 87–95, 2008.

64

